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Abstract

We study the smoothed complexity of finding pure Nash equilibria in Network Coordination
Games, a PLS-complete problem in the worst case (even when each player has two strategies).
This is a potential game where the sequential-better-response algorithm is known to converge to a
pure NE, albeit in exponential time. First, we prove polynomial (respectively, quasi-polynomial)
smoothed complexity when the underlying game graph is complete (resp. arbitrary), and every
player has constantly many strategies. The complete graph assumption is reminiscent of per-
turbing all parameters, a common assumption in most known polynomial smoothed complexity
results.

Second, we define a notion of a smoothness-preserving reduction among search problems,
and obtain reductions from 2-strategy network coordination games to local-max-cut, and from
k-strategy games (with arbitrary k) to local-max-bisection. The former together with the re-
cent result of Bibak, Chandrasekaran, and Carlson (SODA ‘18) gives an alternate O(n®)-time
smoothed algorithm for the 2-strategy case. This notion of reduction allows for the extension
of smoothed efficient algorithms from one problem to another.

For the first set of results, we develop techniques to bound the probability that an (ad-
versarial) better-response sequence makes slow improvements on the potential. Our approach
combines and generalizes the local-max-cut approaches of Etscheid and Roglin (ACM TALG,
2017) and Angel, Bubeck, Peres, and Wei (STOC ‘17), to handle the multi-strategy case. We
believe that the approach and notions developed herein could be of interest in addressing the
smoothed complexity of other potential games.
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1 Introduction

Coordination games are a widely studied class of games, where players receive equal payoffs, and so
are incentivized to coordinate. Network coordination games are a succinctly represented, natural
multi-player extension of coordination games. The players simultaneously play multiple two-player
coordination games, and receive the sum of their payoffs from these individual games. As a caveat,
the players must choose the same strategy to play in all games. These games naturally arise
in various settings like social networks, biological networks, routing and congestion on roads etc.
[Aral7, MS10, KPHI4l, [Smi79, Rou07], and have been extensively studied in various areas like Game
theory and economics, Learning, Networks etc [HHKS13, BBWS17, [EI193, [CGKP11, [ADTWO03].

The natural dynamics in such a game imply that agents will change their strategy choices if this
increases their payoff. Because these are coordination games, this also increases the total sum of
payoffs. This sum is then a proxy for the progression towards an equilibrium, where no player can
improve, hence is a potential function for the game, and the game becomes a potential game. When
no player can benefit by deviating, or equivalently the potential function reaches a local mazximum,
this is a pure Nash equilibrium, and the standard search problem for most potential games is to
find such an equilibrium.

Finding a pure Nash equilibrium in a network coordination game is complete for the class PLS
(Polynomial Local Search) [CD11]. Although it is widely conjectured that PLS is unlikely to lie
in P [BCET98,[BPR15, Rub17], problems in this class admit local-search algorithms [JPY8S], which
have been observed to be empirically fast [JPYS8S, [CDRP0S8, [DFIS16], but requiring exponential
time in the worst case [SY91, [SvS04]. To understand this discrepancy, we naturally turn to a
beyond worst-case analysis technique called smoothed analysis, which “continuously interpolates
between the worst-case and average-case analyses of algorithms,” [ST04] (see Section [6]for a detailed
discussion). Informally, we wish to show that adversarial instances are “scattered” in a probabilistic
sense. We say that an algorithm is smoothed-efficient if it is efficient with high probability when
the inputs are randomly perturbed—this is one of the strongest guarantees one can hope for beyond
worst case. The above gives rise to the following question:

Question. Can we design smoothed efficient algorithms for finding pure Nash equilibria for
network coordination games?

In this paper we answer the question in the affirmative. In particular, we obtain smoothed
(quasi-)polynomial time algorithms to find pure Nash equilibria (PNE) in network-coordination
games (NetCoordNash) with a constant number of strategies. We also introduce a notion for a
smoothness-preserving reduction, and show that a special case of NetCoordNash admits such a
reduction to local-max-cut, and the general case admits a reduction to local-max-bisection (see
Section for the problem definitions).

To the best of our knowledge, no smoothed efficient algorithm for a worst-case hard Nash
equilibrium problem was known prior to this work, apart from the party affiliation games, the
smoothed complexity of which directly follows from local-max-cut [FPT04].

Local-max-cut is a PLS-complete problem, where the goal is to find a cut in a graph that is
maximal up to switching one vertex. In a recent series of results, the smoothed complexity of local-
max-cut was shown to be first quasi-polynomial for arbitrary graphs [ER17], and then polynomial
for complete graphs [ABPW17]. Both results and a recent (simultaneous) work [BCC19] follow a
common high-level framework. Our analysis extends this high-level approach to NetCoordNash.
However, local-max-cut is a special case of NetCoordNash where every player has two strategies
and the matrix on every edge is off-diagonal (see Figure . To handle the extra complexity of
NetCoordNash in general, we need to design novel techniques to obtain the appropriate bounds
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Figure 1: Local-max-cut to 2-strategy network coordination games: mapping of edge (u,v).

and combine them.
Furthermore, to the knowledge of the authors, no notion of smoothness-preserving reduction
has been shown in the past, and we believe that such reductions are of independent interest.

1.1 Our Results

A network coordination game is represented by an undirected game graph G = (V, E), where the
nodes represent players, and each player v € V simultaneously plays a two-player coordination
game with each of its neighbors. If every player has k strategies to choose from, then the game
on each edge (u,v) can be represented by a k x k payoff matrix A,,. Once every player chooses
a strategy, the payoff value for each edge is fixed, and each player gets the sum of the payoffs
on its incident edges. The goal is to find a PNE of this game. We will show that the natural
better-response algorithm converges quickly with high probability for a perturbed instance.

Smoothed Analysis of NetCoordNash. A choice of strategies is at equilibrium if no player
can gain by deviating unilaterally. Better-response dynamics/algorithms are an iterative procedure
where any player who can gain by changing strategy, does so, one at a time until an equilibrium is
reached. Such a procedure need not converge in generaﬂ In our setting, however, the sum of payoffs
of all players acts as a potential function, measuring the progress of this algorithm (Section .
Thus, starting from any initial choice of strategies, better-response algorithm (BRA) will converge
to a PNE in network coordination games, since the potential function is bounded.

We show that the BRA is an efficient algorithm with probability 1 —1/poly(n) for perturbed in-
stances: when the payoff values are independently sampled from distributions with density bounded
by ¢, the runtime will be polynomial in ¢ and the input size with high probability. One may inter-
pret ¢ as the inverse of the minimum allowed perturbation. Formally, we show the following:

Theorem 1.1. Let G = (V, E) be a game graph for an instance of NetCoordNash, with k x k payoff
matrices, whose entries are independently distributed, continuous, random variables, with densities
Juwiy: [=1,1] = [0,¢]. Letn:=|V|. If G is a complete graph, then with probability 1 — (nk) ™3, all
valid executions of the BRA will converge to a PNE in at most (nkd))o(k) steps, and the expected
mazimum number of steps of any valid execution is polynomial in ¢F and n*.

If G is arbitrary, all valid executions of the BRA, from all starting points, will converge to a PNE
in at most ¢ - (nk)OF108R) steps with probability 1 — (nk)~2 over the payoff entries. Furthermore,

the expected mazimum number of steps of any valid execution is polynomial in ¢ and n¥18(nk).

An outline of the proof is given in Section and the missing details in Section The
polynomial running time requires the graph to be complete so that all parameters can be perturbed.
This seems to be unavoidable as all known results on polynomial smoothed complexity so far, e.g.,
linear-programming [ST04], local-max-cut[ABPW17], etc., require this.

The above performance guarantees are only (quasi-)polynomial in the input size for k fixed.
We leave it as an open problem to improve this. This can be achieved either by showing that
local-max-bisection has polynomial smoothed complexity (see below), or by directly tightening the
bounds in the proof presented in this paper (Section [3.1).

for instance, consider zero-sum games where the total sum of payoffs is zero for any choice of strategies.



Smoothness-Preserving Reductions. Note that standard Karp reductions do not suffice to
extend a smoothed efficient algorithm from one problem to another. This is because, among other
things, such a reduction needs to ensure that independently perturbed parameters of the original
problem produce independent perturbations of all parameters in the reduced problem. In this work,
we introduce a notion of a smoothness-preserving reduction, which to the knowledge of the authors,
has not been studied prior to this work. We obtain two such reductions:

Theorem 1.2. NetCoordNash with 2 X 2 payoff matrices admits a weak smoothness-preserving
reduction to the local-maz-cut problem. Furthermore, NetCoordNash with k X k matrices for general
k admits a weak smoothness-preserving reduction to the local-max-bisection problem. For both
results, an instance of NetCoordNash with a general or complete game graph reduces to an instance
of local-mazx-cut/bisection on a general or complete graph, respectively.

The definition of weak reductions is given in Section and a formal statement of the local-
max-cut and -bisection problems is in Section An outline of the proof is given in Section 3.2 and
the missing details in Section [bl The first reduction, together with smoothed efficient algorithms for
local-max-cut, gives alternate smoothed efficient algorithms for the £ = 2 instance; in particular,
the recent result of [BCCI9] gives an O(n®) algorithm when the game graph is complete. For
general network coordination games, the smoothed complexity of local-max-bisection is open, and
so any conclusion on the complexity of NetCoordNash is conditional.

1.2 Related Work

The works most related to ours are [ER17] and [ABPWI17], who first analyzed the smoothed
complexity of local-max-cut, and [BCC19] who refined the analysis of the latter. As discussed
earlier local-max-cut is a special case of NetCoordNash, therefore techniques of the former do not
directly apply. Independently, [BCC19] also obtained smoothed polynomial algorithms for local-
max-3-cut on complete graphs, and quasi-polynomial algorithms in general for local-max-k-cut with
constant k. Local-max-k-cut naturally reduces to NetCoordNash with kx k payoff matrices, however
we note that our result does not subsume theirs as the reduction is not smoothness preserving.

Beyond-worst case complexity of NE computation. For Nash equilibrium (NE) computa-
tion, the smoothed complexity of two-player games is known to not lie in P unless RP = PPAD
[CDTO06al], which follows from the hardness of (1/poly)-additive approximation. On the contrary,
for most PLS-complete problems, the natural local-search algorithm often finds an additive ap-
proximate solution efficiently. There is always a “potential function” that the algorithm improves
in each step. Intuitively, until an approximate solution is reached, the algorithm will improve the
associated potential function significantly in every local-search step.

Towards average case analysis, Bardny, Vempala, and Vetta [BVV07] showed that a game picked
uniformly at random has a NE with support size 2 for both the players with high probability. The
average case complexity of a random potential game was shown to be polynomial in the number of
players and strategies by Durand and Gaujal [DG16].

Due to space constraints, we list broader related work on smoothed analysis in general, and
worst-case results for Nash equilibrium computation in Section [0}, following the technical discussion.

2 Preliminaries: Game Model and Smoothed Analysis

In what follows, the set {1, 2, ..., k} is denoted as [k], and (-,-) denotes inner product.



2.1 Nash Equilibria in Network Coordination Games

A two-player game, where each player has finitely many strategies to choose from, can be represented
by two payoff matrices A and B. It is without loss of generality to assume that both players have
k strategies, and thus the matrices are k x k. It is called a coordination game if A = B.

A network coordination game is a multi-player extension of coordination games. The game is
specified by an underlying undirected graph G = (V, E), where the nodes are players, and each
edge represents a two-player coordination game between its endpoints. We term it a k-network
coordination game if each player has k strategies. For disambiguation, we will represent the payoff
values as an | E|k?-dimensional vector A, and denote as A((u,7)(v,7)) the payoff that players v and
v get for the game-edge uv € E, when u chooses strategy ¢, and v, strategy j. As Nash equilibria
are invariant to shifting and scaling of the payoffs, we assume without loss of generality that every
entry of A is contained in [—1, 1].

Potential Function. We will see below that we may restrict our attention to pure strategies,
i.e. no randomization by the players. Let n be the number of players; a strategy profile is a vector
o € [k]", implicitly assigning to each player a strategy in [k]. The payoff to player u is given by

payoff (o) := >, yoer A((w, 04) (v, 0v))

Define the potential function ® : [k]™ — R to be the sum of all payoffs. Formally,

®(0) = Z(u,v)EE A((u, o), (v, 0v)) = % >_uev Payofl, (o) (1)

The potential function is of interest since it captures the possible improvements to all players’
payoffs in the following sense [CD11]: if player u changes their strategy, ®(o) and payoff, (o)
change by the same amount. Formally, for all u € V, oy, 0/, € [k], and o, € [k]*!

(oy,0_y) — ®(0y,,0_y) = payoft,(oy,o_y) — payoft, (0}, o)

where o_, € [k]"~! denotes the strategy profile on V' \ u. Network coordination games are termed
potential games because they admit such a potential function. As a consequence, they must admit
pure Nash equilibria [Ros73].

Nash Equilibrium and Better-Response Algorithm (BR alg., or BRA). At a Nash
equilibrium (NE), no player gains by deviating unilaterally.

NE:  YueV, payoff,(oy,0_,) > payoff, (o), 0_,), Vo, € [K]

Such a o is called pure NE (PNE) as every player is playing a deterministic strategy. By the
discussion above, o is a PNE if and only if it is a local maximum for ®, where ¢’ is in the local
neighbourhood of & when they differ in exactly one entry.

A change in strategies for one player is termed a better-response (BR) move if their individual
payoff strictly increases. Note that if o’ is a BR deviation from o, differing in a single player, then
®(0’) > ®(o). The better-response algorithm (BRA) consists of repeatedly making better-response
moves, increasing the ® value in every step. The terminating point has to be a local maximum of
®, and thereby a PNE. Since ® may only take k™ values, this procedure must terminate at a PNE.

2.2 Smoothed Analysis and Reductions

The notion of smoothed analysis was introduced by Spielman and Teng [ST04] to bridge the gap
between average- and worst-case analysis. The parameters of the problem are perturbed by some
small noise, and the performance is measured as a function of the perturbation size.



In Section we will define a notion of reduction — not unlike Karp reductions — which allow
smoothed complexity results to be translated from one problem to another. Note that standard
Karp reductions do not achieve this, as they do not give any guarantees on the distribution of the
reduced variables when in the input variables are randomly perturbed. We provide here a formal
definition of problems which admit smoothed efficient algorithms.

Definition 2.1 (Independent distributions with bounded density). Let X be a random vector
in [—1,1]9. We say it is independently distributed with density bounded by ¢ if the entries are
independently distributed, and the p.d.f. for the i-th entry is a function f; : [-1,1] — [0, ¢].
Observe that the joint distribution on X has p.d.f. upper-bounded by ¢¢.

The intuition of this notion is that X must be “spread” by at least 1/¢ in each point, and so we
define running-time bounds as a function of ¢. A fact that will be of interest, and which is central
to the proof of the anti-concentration bound at the heart of this paper and previous local-max-cut
papers, is that composing random variables with integer matrices will only reduce the joint density.

Proposition 2.1 ([R6g08]). Let X € R? be a random vector such that the joint probability on any
a < d coordinates of X is upper-bounded by ¢* at all points, and let M € R>? be full-rank, with
entries which are multiples of n, for £ < d. Then the random variable Y := M X also has bounded
joint density fy (y) < (¢/n)¢ for all y € R,

A proof of this proposition is given in Section We continue with a formal definition of
polynomial smoothed complexity in our setting.

Definition 2.2 (Polynomial Smoothed Complexity). Let P be a search problem, whose instances
consist of some structural information D — e.g. a graph — and some real-valued information X —
e.g. edge weights. We say A is a smoothed efficient algorithm for P if, A(D, X) returns a correct
solution with probability 1, and there exist constants ¢,¢ > 0 such that whenever X € R? is an
independently distributed random vector with density bounded by ¢, as in the previous definition,

mgxf)’(r [running time of A on (D,X) > (d-|D|-¢)°] <(d- D)~

P is said to have polynomial smoothed complexity if it admits a smoothed efficient algorithm. It has
O(log(d-| DY)

quasi-poly smoothed complexity if a similar guarantee holds for running time (d - |D| - ¢) .
Local-max-cut and -bisection. In this paper, we define smoothness preserving reductions which
allow the extension of smoothed-complexity results, as defined above, from one problem to another.
Namely, we obtain reductions to the local-max-cut and -bisection problems. These problems are
defined as FLIP and SWAP respectively in [SY91]. Given a weighted graph G = (V, E), local-max-
cut is the problem of finding a cut which is maximal up to flipping one vertex across the cut, and
local-max-bisection is the problem of finding a balanced cut of the nodes into two sets of equal
size, whose cut value is maximal up to swapping a pair of nodes across the cut. Both problems are
shown to be PLS-hard in [SY91], and the smoothed complexity of local-max-cut has been studied
at length, as discussed in the introduction.

3 High-Level Proof Ideas for Theorems [1.1/ and |1.2

In this section, we give the high-level structure for the proofs of our main results. The remaining
sections of the paper provide the missing details. We first outline the analysis of the BRA local
search procedure (Theorem [1.1]), then outline the smoothness-preserving reductions (Theorem [1.2)).



3.1 Theorem : Smoothed performance of the BRA

We begin with the proof of Theorem Observe that in the theorem statement, the randomness
is only on the values in the payoff matrices, and not on the choice of BR moves. These results hold
if the BR moves are chosen adversarially in response payoffs. Recall that a profile o is a PNE if
and only if it is a local maximum of the potential ®, and note that ® may only take values in the
interval [—n?,n?], since the payoffs are in [—1,1]. Therefore it suffices to show significant increase
in ® for every linear-length sequence of BR moves, with high probability. Formally,

Theorem 3.1. Let G = (V,E) be a game graph, with random payoff vector A, and o° € [k]" be
an arbitrary strategy profile. With probability 1 — (nk)~2 over the values of A, all BR sequences of
length at least 2nk, initiated at any choice of o°, must have at least one step in which the potential
increases by e = ¢~ 1 (2n2k3)~20k108(nk) | ¥ G is a complete graph, then with probability 1—(nk)=3, all
BR sequences of length at least 2nk, will have at least one step increasing by € = (20p>n3k3) 44,

This theorem, along with the above observations, implies that the BRA must terminate in
qﬁ(nk)O(klog(”k)) steps with probability 1 — (nk)~2, and if the graph is complete, in ((;Snk)o(k) steps
with probability 1 — (nk)~3. The results in expectation follow from the high-probability results, as
proved in Section [4.5] Therefore, Theorem follows from Theorem (3.1

Following the pattern of [ER17, [ABPW17, BCC19], we will begin by expressing the increase in
potential as a linear combination of the payoff values, and reduce the proof of Theorem to the
application of an anti-concentration inequality and a union bound.

Each step of the BRA consists of some player, u, deviating from their previously chosen strategy
to anew o € [k, which we will denote as the (player,strategy) pair (u, o). Thus, an execution of the
BRA is fully specified by a sequence of pairs S = (u1,01), (ug,02), ..., along with an initial strategy
vector ¥ € [k]™. The strategy profile at time ¢ is given by o := (o3, O't__u:t). We introduce next the
potential-change matriz for a BR sequence, which allows us to control the value of ®(a?) — ®(o'~1)
as a function of the payoff values.

Definition 3.1. For any fixed BR sequence S of length ¢, we define the set of vectors L(S,a°) =
{1, A2, ..., Ag}, where Ay € {—1,0, 1}(|E‘Xk2), for all . The entries of A; are indexed by indices
of payoff matrix entries, denoted ((v,7)(w,7)). The values of its entries are chosen as follows:

=9 and o
-1

1 ift we{v,w} and o
A((vy9)(w,j)) =< =1 if: w € {v,w} and o
0  otherwise.

t
v
t I .
v =1 and oy, 7

That is, every entry signifies if the corresponding payoff value remains in consideration (0), gets
added to the total payoff (+1), or removed (—1). We term this set of vectors, or equivalently the
matrix whose columns consist of the A¢’s, as the potential-change matriz of a sequence.

The arguments S, a” will be omitted if they are clear from context. Observe ®(o?) —®(o? 1) =
(A¢, A), where A is the vector of payoff values, so the vector (L - A) represents the sequence of
changes in ® along an execution of the BRA. Theorem [3.1] is then equivalent to bounding the
probability of LA ¢ [0, €]’ for all sequences of length ¢ > 2nk. We will apply the following lemma:

Lemma 3.2 ([R6g08]). Let X € RY be a random vector such that the joint probability on any a < d
coordinates of X is upper-bounded by ¢ at all points. Let M be a rank v matrix in nZZXd, i.e. all
entries are multiples of n. Then the joint density of the vector M X is bounded by (¢/n)", and for
any given by, ba, ..., by € R and e > 0,

Pr [MX € b1, by + ] X - x [be,be + ]| < (de/n)" (2)

6



The proof of this lemma is given in Section as the statement is more general than the
original result. However, the proof remains the same.

Remark 1. Observe that if X is a vector whose entries are independently distributed, and each
X, has probability density bounded by ¢, then the joint distribution over any a coordinates of X
has density bounded by ¢*. In [R6g08], the above lemma has been stated under this assumption
of independence, but the proof of the lemma only requires this density bound.

It suffices, then, to show that L has large enough rank, applying the above lemma with M =
L(S,0%) and X = A, and taking a union bound over the choice of S and ¢°. The right rank bound
would imply Theorem The task at hand then is to get the largest possible rank bounds and
tight union bounds to get good running time overall. We introduce here some parameters.

Definition 3.2 (Active, Inactive, Repeating, and Non-Repeating players.). Let S be a BR se-
quence, then player u is said to be active if she appears in the sequence, and otherwise, the player
is termed inactive. An active player u is said to be repeating if there exists some strategy ¢ such
that (u,i) appears at least twice in S, or if (u,0)) appears in S at all. An active player which is
not repeating is said to be non-repeating. We introduce the following notation:

p(S) | number of active players in S, d(S) | number of distinct (u,7) moves in S,
p1(S) | num. of non-repeating players in S, || d1(S) | distinct moves by non-repeating players,
p2(S) | number of repeating players in S, qo(S) | number of distinct (u, o)) moves

Observe that p=p1 +p2, k-p>d>p, k-p1 >di > p1, and gy < ps. We will often use the
quantity d(S) — qo(S), which is the number of “new” strategies played by the players.

3.1.1 Inactive Players, Rank Bounds, and Union Bounds

As discussed above, the goal is to show that L(S) has large rank, and apply Lemma taking
a union bound over all the possible sequences S of size, say, £. Naively, we have k"(nk)z choices
of sequence of length ¢ and initial strategy profile. However, if p(S) < n, the rank bound cannot
exceed d(S) < k- p(S) in our model, which does not match the union bound. To fix this, we will
modify the matrix L in two different ways.

The two modified matrices will be relevant in the remaining analysis for the cases p1(S) > p2(S)
and p2(S) > p1(9), respectively. This case analysis is similar to the proofs in [ABPW17, BCC19],
however these two papers each use only one of the two constructions for both cases. In our analysis,
the rank bounds for the case p; > po were only attained on the rounding construction, and the
bounds for the converse case were only attained on the other. This distinction arises from the size
of the strategy space, which allows for more complex interactions between the rows of L, and both
constructions are required in different arguments.

Control by rounding. The first builds on a construction introduced in [ABPW17]. While the
construction works for arbitrary graphs, the rank bounds hold only for complete graphs. Observe
that if Vo C V is the set of inactive players, and u € V is active, then for i fixed, all ((u,7)(v,0)))
rows of L for v € V, are identical, modulo flipping a row’s signs. This is because v’s strategy
never changes. Therefore, in the inner product (A, A), these ((u,i), (v,0))) terms are added or
subtracted together, and we may simply take a union bound on an approximation of this value,
instead of controlling for strategy choices. This idea is formalized in Section

For p(S) fixed, there are at most (nk)‘ choices of the BR sequence, kP(5) choices of initial
strategy profiles for the active players, and d(S) —qo(.S) different “buckets” of the payoffs with 4n/e



choices for the approximate value. Thus, we have a union bound of size kP(5) (nk)*(4n /e)*($)=a(S),
In Section we show that, whenever the graph is complete, L(S,o") has rank at least d(S) —
q0(S) + d1(5)/2, after we consider a “bucketing” operation.

To bound the probability of success for all BR sequences, we restrict our attention to critical
subsequences, as used in [ABPWIT, BCC19]. These are maximal (up to inclusion) continuous sub-
sequences S’ satisfying £(S") > 2(d(S") — qo(S")), formally defined in Section As we will show,
these must exist, and satisfy £(S”) = 2(d(S") — qo(S")), which by definition is at most 2kp(S). For
a fixed choice of p,p1,pe,d, di, gy, we bound the probability of any sequence having all improve-
ments between 0 and €, by (nk$)‘e1(9)/2 < (nke)Okr(9)p1(5)/2 ysing the above rank bounds and
Lemma [3:2] Summing over all choices of parameters only introduces a polynomial blow-up.

Control by cyclic sums. The second is more intricate, and is loosely based on a construction
n [ER17]. The bounds proved here hold for arbitrary graphs. The intent is to construct a new
matrix Q whose columns lie in the span of L, which cancels the contributions of inactive players,
but allows us to perform a similar analysis as above.

Suppose the move (u,i) appears twice in S, or (u,ol) appears in S. Let 75 be the index of the
first occurrence of (u,7) in the BR sequence (19 = 0 in the latter case), and let 71,7,... be all
subsequent appearances of (u, -) in the sequence. Suppose 7y, is the second occurrence of (u, ) in the
BR sequence. Then we let q,,; := Z;”Zl }\Tj, noting that the 7y is omitted, and we show in Section
that the entries of g corresponding to inactive players are all 0. Let Q(S, ) be the matrix whose
columns consist of the g’s. To take a union bound on all () matrices, it suffices to fix the initial
strategy of only the active players. Furthermore, we have that L-A € [0,¢] = Q- A € [0, £e]?~%,
so we may apply Lemma on the matrix Q.

Fixing p(S), there are at most (nk)’ choices of the BR sequence, and kP(%) choices of initial
strategy profiles for the active players. Thus, we have a union bound of size kP(5) (nk)t. In Sec-
tion we show that, on any graph, Q(S, ") has rank at least p3(S)/2. Thus, for a fixed choice
of p, p1,p2,d,d1, qo, the probability of any sequence having all improvements being between 0 and €
is then bounded by (nkeg)*P(5)) (£4e)P2(5)/2 by Lemma Summing over all choices of the fixed
parameters only introduces a polynomial blow up.

Conclusion. We conclude Theorem from the above bounds, which we summarize here:

Graph Rank Bound Union Bound Probability of Success V.S
complete | d(S) — qo(S) +d1(S)/2 kP (4n/e)U S-S (nk)t 1 — (nk¢) 5)) e (9)/2
general p2(S)/2 kP (nk)? — (nk)O®P(S)) (fpe)p=(5)

The result on general graphs uses only the bounds from the cyclical sum construction, and
a lemma of [ER17] which ensures that any sequence must contain a sub-sequence S’ such that
p2(S") > Q(p(S")/log(nk)). Applying the above bounds with € = 1/(nk¢)?*108(®k)) gives the
desired result for general graphs. For complete graphs, we restrict ourselves to critical blocks as
described above, using rounding when p1(S) > p2(.5), and cyclic sums when po(S) > p1(S). Setting
e = 1/(nke)°® for both gives the second half of Theorem Along with the details of Sections
this concludes our proof of Theorem and as a result, Theorem

3.2 Smoothness-Preserving Reduction to Local-Max-Cut and -Bisection

In this section, we define the notion of smoothness-preserving reduction, and outline the two re-
ductions of Theorem [I.21



3.2.1 Smoothness-Preserving Reductions

We refine standard Karp reductions to define smoothness preserving reductions. Recall from Sec-
tion that an algorithm is said to be smoothed-efficient if, on adversarially chosen combinatorial
information, and random real-valued inputs, the algorithm runs in time polynomial in the input
size and the degree of perturbation, with high probability. The idea behind the reductions is to
allow a perturbed instance of P to be mapped to a perturbed instance of Q, preserving sufficient
randomness to allow for a smoothed efficient algorithm for Q to be applied. The output of the
algorithm is then mapped back to a solution for the original P instance. The usual definition of
Karp reduction does not allow such conclusions.

Definition 3.3 (Strong and Weak Smoothness-Preserving Reductions). A weak (randomized)
smoothness-preserving reduction from a search problem P to problem Q is defined by poly-time
computable functions f; and fo, a full-row-rank matrix M with polynomially bounded entries, a
constant 1 such that 1/7 is polynomial in the input size, and a real probability space Q C RY;
such that the following holds: For any I = (D,X) € Pand R € Q, J = (fi(D), nM(X o R)) is
an instance of Q, such that if o is a solution to J, then f2(o) is a solution to I. Here, o denotes
concatenation. We require that |fi(D)], the dimension of R, and the size of M, be polynomial in
|I], that the probability density of the entries of R be polynomial in || and the maximum density
on X, and that the entries of R be independently distributed. If M is a diagonal matrix, then this
is a strong smoothness-preserving reduction.

At first blush, the extra randomness R is superfluous. These variables are introduced to ensure
that M has full-rank. The result of Proposition [2.1] ensures that if the entries of X and R have
bounded density, and |det(nM)| > n¢, then the joint distribution on M (X o R) has polynomially
bounded density. When M is diagonal, the random input to the reduced instance has indepen-
dently distributed entries, which are required by most smoothed analysis results, and so strong
reductions easily extend smoothed efficient algorithms. We conjecture that for most smoothed
analysis, an upper-bound on the joint density of the input values suffices for efficient performance
of the algorithm. We formalize as follows the properties of smoothness-preserving reductions.

Lemma 3.3. (a) Suppose problem Q has (quasi-)polynomial smoothed complexity. Then, if prob-
lem P admits a strong smoothness-preserving reduction to Q, then P also has (quasi-)polynomial
smoothed complexity. (b) If Q still has smoothed efficient algorithms when the input is arbitrarily
distributed with a bound on the joint density as in Proposition[2.1 and Lemmal3.3, then if P admits
a weak smoothness-preserving reduction to Q, P has (quasi-)polynomial smoothed complezity.

A formal proof is given in Section [5] The results follows almost by definition, modulo techni-
calities. Observe that local-max-cut satisfies the conditions of part (b), since the proofs of [ERI7,
ABPW17] simply apply Lemma to the input, similarly to the argument in Section Thus
weak reductions to local-max-cut do imply smoothed efficient algorithms. We highlight again that
the key property of smoothness-preserving reductions is that the matrix M is full rank, since this
ensures that the joint density on the reduced parameters is sufficiently bounded.

Note that the smoothed complexity of local-max-bisection is not yet known, but we believe that
the natural local search procedure may admit a similar smoothed analysis to local-max-cut. This
would imply a smoothed efficient algorithm for k-NetCoordNash for non-constant k.

3.2.2 Outline of Reductions

We continue with a proof of Theorem [1.2] providing weak smoothness-preserving reductions from
NetCoordNash to local-max-cut and -bisection. The reductions themselves are not particularly



novel. What is more important is defining the matrix M and showing that it is indeed full-rank.

2-NetCoordNash reduces to Local-max-cut. We begin with the first reduction from network
coordination games with 2 x 2 payoff matrices, to graph cuts. Let G = (V, E) be the game graphs,
with payoff vector A. We will construct a weighted cut graph H = (V', E’) where V' =V U {s,t},
and E’ is obtained from E by adding su and ut edges for all u € V. We wish to select edge weights
such that (1) every locally maximal cut is an s-t cut, and (2) the value of the cut (S,7) with s € S
and t € T is equal to the total payoff of the game when o, = 1 if u € S, and 2 if u € T. Thus,
changing a player’s strategy is equivalent to flipping the vertex across the cut, and so solving for a
local max cut is equivalent to solving for a local max of the game’s potential function.

The following figure gives the edge weights for a small 2-player example which achieve the above
properties, with the payoff matrix given as follows:

m fe (@ b
uv game payoffs: | =

%((I‘FC) + Rv

The general construction, which is specified in Section[5.2] places a copy of this gadget for each of the
game-edges in the network game, and sums the edge weights. Observe that the above construction
indeed has edge weights which are linear combinations of the payoff values. Furthermore, even if
R, = R, = 0, cut values are equal to payoff values, and the maximal cuts are s-t cuts. The w, and
w, values are added to increase the rank of the reduction matrix, which as discussed above, is the
key property of these reductions. In Section [5.2] we show by induction on the number of players
that the matrix has full rank, which implies that it is a valid reduction.

Observe that the cut graph is complete if and only if the game graph is, as all su and ut edges
are present in the cut graph, and there is a uv edge in the cut graph whenever there is a uv game.

k-NetCoordNash reduces to Local-max-bisection. Reductions from games with k strategies,
to show the second part of Theorem is not as straight-forward. Let G = (V, E) be the game
graph again, and we will construct a weighted cut graph H = (V', E’). V' is given by the set of
all (player,strategy) pairs V' x [k], with two extra vertices s and ¢. E’ is obtained as follows: for
every node (u,i), we add an {s, (u,4)} and {(u,i),t} edge, for every u € V and ¢ # j, we add a
{(u,1), (u,7)} edge, and for every wv € E and i,j € [k], we add a {(u,1i), (v,j)} edge. Call a cut
(S,T) valid if s € S, t € T, and S contains exactly one (u,i) node for all u € V. To balance the
cuts, we will replace s with n(k — 2) + 1 copies so, 51, . -, Sp(k—2), and require them all to lie in 5.

To each valid cut is associated the natural strategy profile where o, is given by the unique (u, 1)
node in S. We wish to choose edge weights such that (1) all locally maximal bisections are valid,
and (2) the cut value is equal to ®(o). (1) will be achieved by making the {(u, 1), (u,j)} edges bad,
and the {sq, (u,7)} edges good, using the extra randomness available. This respectively ensures
that it is always in our interest to have a small number of (u, ) nodes in S, but not none. As above,
we will introduce extra randomness to the edge weights to ensure that M is full-rank. In this case,
we will show M is full rank by arguing that it is upper-triangular after basic row operations.

The cut graph is again complete if and only if the game graph is, and thereby we have shown
the second part of Theorem
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4 Smoothed Analysis of the BR Algorithm

In this section we provide the missing details of the proof of Theorem as outlined in Section [3.1]
We use the notation of Section 3.1 and begin with the case where the game graph is complete.
We will recall some notation. Fix a game graph G = (V| FE), and random vector of payoff
values A € [—1, 1]|E|k2, where, for all uv € E, A((u,7)(v,j)) is the payoff that players u and v
receive in the wv game when u plays i € [k] and v plays j € [k]. For a sequence of BR moves

S = (u1,01), ..., (ug,0¢) starting at initial strategy profile a® € [k]", the strategy profiles over the
sequence are defined as o' := (oy, O't__ult). Recall, L(S,0°) := {\1, ..., A¢} where
1 it we{v,w} and ol =i and ol =3
A((v,i)(w,5)) =< =1 if: w € {v,w} and ol t=4i and ol =]

0 otherwise.

As outlined in Section [3.1.1] we will provide two modifications of the matrix L with good union
bounds, and show sufficient bounds on the rank of L. We wish to prove Theorem — that for
any sufficiently long sequence, at least one move must have increased the potential significantly
Thus, we define the following;:

Definition 4.1 (Minimum Improvement). For a fixed sequence S and initial state o, recall that
the t-th entry of L(S,0") - A is the value ®(o!) — ®(o?™1). Since A is random, these values are
random, and not necessarily positive. If some entry is negative, then S is not a BR sequence. We
define Ay as the increase in potential of the worst BR sequence. Formally,

An = 1;111%1 |L(S,0%) - Allos  subject to |S| =N, L(S,a")-A>0
Observe that for N = O(nk), if Ay = 1/poly(n*,$), then the running time is polynomial,

and if Ay =1/ poly(nk lognk ¢), then the running time is quasi-polynomial. Thus, Theorem is
equivalent to showing that

]ir [Aanz < ¢—1(2n2k3)—20klog(nk)} < (ni)Q in general (3a)
]?;lr |:A2nk < (2O¢2n3k3)*4k*4} < (ni)g, for complete game graphs (3b)

It remains to give the proof of this result, which we will do by case analysis. We wish to distinguish
between the cases when p1(S) < p2(S), and the converse, following the outline of Section We
define Ay and Ay to be defined similarly, but requiring that pi(S) > p2(S) and p1(S) < pa2(S),
respectively.

4.1 Rank Bounds and Union Bounds via Rounding

We begin with the “rounding” construction of Section We'll first define the matrix L for
the rounded values, then introduce the concept of critical block, which will allow us to show the
desired rank bounds. For this section, we may assume that the graph is complete. We will use
completeness to ensure that between any two nodes, there is a game edge we may use for rank
bounds, specifically in the proof of Lemma

11



4.1.1 Matrix Construction

Fix a BR sequence S, and let Vj be the set of inactive players, and V; the set of active players.
Since we are looking to control the rate at which ®(o!) grows with ¢, we may without loss of
generality assume ®(o”) = 0 by adding a constant shift. Formally, let ¥(t) := ®(a!)—®(a”), which
satisfies U(t) — U(t — 1) = ®(o!) — ®(o'1). Further, define A((u,0y)(v,00)) = A((u, 04)(v,04)) —
A((u, ) (v, al)). Then

U(t) = Z A((u, UZ)(U’UZ)) - A((”?‘TS)(U’UB))

u,veV
= > Awol)web)+ Y A((w,el)w ol))+ > > A((u,0h) (w, 0l))
u,veV] w,w’eVy ueVy weVy

Rounding the effect of inactive players. Now, for w € Vg, o, = 6, so middle terms on the

second line are 0. Furthermore, the rightmost terms are in fact constants, depending only on oy,.
Let then C(u,0) := 3, vy Al(u, 0)(w, a0)). Then the above sum can be expressed as

U(t) = > Alwol)(v,0ol) + 0+ > Clu,0l)

u,veV] ueVy

Observe also that C(u,0%) = 0, since the A terms cancel. Finally, instead of controlling for
U(t) — ¥(t — 1) exactly, it suffices to control for an approximation thereof.

We round the C' values to the nearest multiple of €, as was first introduced in [ABPW17].
Let C’'(u,0) be the nearest multiple of € to C(u, o). Since C(u,0) € [-n,n] for all w € V; and
o € [k], then there are 2n/e possible choices for C'(u,0). Let W'(t) :=3", v, A((u, ot) (v, L)) +
> uev, C'(u, o), the approximation to ¥ obtained by using C’ terms instead of C. Since ¥(t) —

(¢t — 1) depends only on two C terms, namely C(u,o’) and C(u, ol 1), we have

1C(u, i) — C'(u,i)] < /2 = ‘(\I/(t) S (- 1)) — (W(t) - W(t - 1))] <e

And therefore Pr[®(o?) — ®(ot1) € (0,¢)] < Pr[¥/(t) — U/(t — 1) € (—¢,2¢)]. This new definition
of potential ¥ will allow us to reduce the needed union bounds.

Union bound size. Let L be obtained from L where for u € Vi, and i € [k], we replace the set
of rows {(u,i)(w,j) : w € Vp,j € [k]} with the single row for C(u,i) — and therefore C'(u,i). To
define L, it suffices to control g restricted to the active players, the sequence S, and the values of
the C’ terms. Recall that C’(u, o) = 0. Furthermore, the only C(u, i) terms which are considered
are those for moves (u,i) which appear in the sequence. Therefore, we only have d(S) terms to
control, go(S) of which are 0, so we get a union bound of size kP(5) (nk)¢(4n/e)*S) = (S),

4.1.2 Critical Subsequences

As discussed in Section [3.1] to get our rank bounds, we will want a sub-sequence S’ whose length is
proportional to d(S") —qo(S’). To this end, we define critical subsequences below. These are closely
based on the definition of a critical block in [ABPW17].

Definition 4.2 (Critical Subsequence). For every contiguous subsequence B of S, let ¢(B), d(B),
and qo(B) be length, number of distinct pairs, and number of return moves, in B, respectively, as
defined in Section Such a subsequence is termed critical if {(B) > 2(d(B) — qo(B)), but for
every B' C B, {(B') < 2(d(B') — qo(B')).

12



Note that a return move — i.e. go-type move — for a subsequence B which starts at time tp is

a move (u, o/2), as opposed to a (u,a)) move. We show that critical subsequences must exist.

Lemma 4.1. A critical subsequence always exists in any sequence S of length 2nk. Furthermore,
if B is a critical subsequence, then {(B) = 2(d(B) — qo(B)).

Proof. As there are at most nk distinct player-strategy pairs possible, the entire sequence S satisfies
the relation £(S) > 2d(S) > 2(d(S) — qo(S)). Conversely, for every subsequence B of length 1 (i.e.
a single move), d(B) = 1,qo(B) = 0 = 1 = ¢(B) < 2(d(B) — qo(B)) = 2. Thus, it suffices to
take an inclusion-minimal subsequence which satisfies ¢(B) > 2(d(B) — qo(B)) and obtain a critical
subsequence.

It remains to show that for B critical {(B) = 2d(B) — 2qo(B). Suppose not, then it is strictly
larger. Let B’ be obtained from B by dropping the last column. Then,

¢B') = {(B)—1 > 2d(B) —2qo(B)+1—-1

Now, we claim d(B) — qo(B) > d(B’) — qo(B’). Clearly d(B) — 1 < d(B') < d(B), and ¢o(B) — 1 <
qo(B’) < qo(B). However, if qo(B’) = qo(B) — 1, then we must also have d(B’) = d(B) — 1. Thus,
in all cases, d(B) — qo(B) > d(B’) — qo(B’). This implies ¢(B’) > 2(d(B’) — qo(B’)), contradicting
the criticality of B. O

The tight bound ¢(B) = 2(d(B) — qo(B)) is key for proving the main rank lemma from this
section, below. We show that critical subsequences have high rank, which by Lemma extends
to any length-2nk sequence.

We extend the definition of Ay (Def. to include the use of critical sequences.

Definition 4.3. We define A’(p) to be the minimum total increase due to any critical subsequence
with exactly p active players, where the initial strategy profile is chosen arbitrarily. Formally,

Al(p) = min |L(S,0°) - Alloc  subject to S critical, p(S)=p, L(S,0")-A>0
o

Similarly, Z/(p) and A’(p) represent the same value, with the extra restriction that pi(S) > p2(S)
and p1(S) < pa(S), respectively. Observe, A'(p) = min{zl(p), A(p)}.

Since any sequence must have a critical subsequence, Ay > minévzl A’(p), we will take a union
bound to show that the probability that Ay < 1/(nk¢)®) is small. As outlined in Section
this bound is performed separately for the two cases specified in Definition min{Z’(p) and
A'(p)}-

4.1.3 Rank Bounds from Separated Blocks

We provide here the main rank bound of this section, which we begin with a definition

Definition 4.4 (Separated Blocks). Fix a BR sequence S, and let P;(.S) be the set of non-repeating
active players. For u € Py, let T;, be the set of indices where the moving player is u. Let T =
Uuep, Tu, and denote without loss of generality 7' = {t1 <tz <--- < t;,}. We will show below how
the ¢;’s “separate” the sequence S, since we will be able to control their ranks separately. To this

end, let S; for i =0, 1, ..., m be the subsequences of S from time ¢; to t;11 excluding boundaries,
respectively, where to = 0 and t,,4+1 = |S|. We say these S;’s are the separated blocks of S, and
denote their collection as S = {Sp, Si, ..., Sm}. Furthermore, note that |T'| = d;(.5).
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The following lemma allows us to take advantage of this notion of separated block, to break up
the rank bounds into simpler subproblems.

Lemma 4.2. Assume the game graph is complete, and let S be a BR sequence with at least one in-
active player, and let L = L(S,0°%) = {\1, A9, ... }. Then L contains at least di(S)+_ g/ d(S") —
q0(S") linearly independent vectors.

Proof. Let w be some inactive player, which we have assumed exists. Let T' = {t; < ta < -+ < tp}
be the endpoints of the separated blocks, as in Definition [£.4 above. For i =0, 1, ..., m, let D; be
the set of distinct (player,strategy) moves which occur in S;, which are not return moves of S;, i.e.
(u, oli) moves.

For all 4, the move at ¢; must be some non-repeating player of S, which we denote v;, and
call the strategy it moves to as o, letting vg be the inactive player w, and ¢" := ¢). For all
(u,0) € D;, let T(i o) be the time of the first occurrence of (u,o) in the subsequence S;, and let

u,
H; = {T(Zu o) i (u,0) € Di}. Let H = Uli'o_l H; U{t1, ..., tig—1}. Foreacht € H,ift = T(i ) € Hi

U,
for some i, u, o, then associate to L; the row ((u,o)(v;,c')). If, instead, ¢ = t; for some 4, then
associate to Ly the row ((v5,0)(w,0")). Note that this row exists because the game graph is
complete.

Consider the submatrix of L consisting of all columns {\; : ¢ € H}, sorted in “chronological”
order, and all of their associated rows, in the same order as their respectively associated columns.
We claim that this matrix is upper-triangular, and its diagonal entries are non-zero. For each
column A, the diagonal entry in the submatrix is the entry for the associated row, which we have
chosen to be nonzero. Furthermore, if t = t; € H, then v; all previous columns have 0 entries in the
((vi, o) (-, +)) Tows, since v; is non-repeating. Thus, Ay, is the first column where the associated row
has a nonzero entry. If, instead, ¢t = T(iu’g) € H;, then the associated row ((u,o)(v;,c")) must have

been 0 up until column A;; as described above. Furthermore, since T(iu ») 18 the first occurrence of
(u, 0 # oli) after time t;, we must have had the row ((u, o)(v;, 0%)) be 0 before the T(iuﬂ)—th column.

These observations imply that our |H| x |H| submatrix, with the given row-ordering, must
be upper-triangular with nonzero diagonal terms. Therefore, it must be full-rank. Since |H;| =

d(S;) — qo(Ss), then |H| = di(S) + Y ges d(S") — qo(S”), and we conclude the desired bound. [
We also extend this proof to the case of all players active.

Corollary 4.3. Let S be a BR sequence where all players are active, and let L = L(S,0°). Then
L contains at least (1 — 1) (d(S) — qo(S)) linearly independent vectors.

Proof. Consider the above proof method with |T'| = 0, and Sy = S. Note that now, H = Dy. It is

still correct if some arbitrary player is chosen to be the w player, and all ((u,o)(vg, c")) terms are
0

replaced with ((u,o)(w, o @))) terms. We must further restrict H not to contain any moves of

player w. Suppose we choose, as our w player, the player which appears the least number of times

in H, then we suffer a (%)—fraetion loss in the size of H, concluding the proof. O

This above lemma and corollary, along with the notion of critical block, will give us our desired
bound.

Lemma 4.4. Assume a complete game graph, and let S be a BR sequence of length 2nk which
has at least one inactive player. Let B be some critical subsequence of S starting at tg, and let
L = L(B,o™). Then L contains at least 3d1(B) + d(B) — qo(B) linearly independent vectors.

14



Proof. Since S has an inactive player, then so must B. Therefore, Lemma [4.2] applies. Recall,
Lemma shows that L contains at least di(B) + X geg(p) d(S") — qo(S’) linearly independent
vectors. p1(B) = di(B) = 0, then we are done. Otherwise, since B is critical, then for all

S’ € S(B), £(S") < 2(d(S") — qo(S")). Hence,
rank(L) > di(B)+ > d(S)—q(S) > 3di(B)+3di(B)+ D 3
S'eS(B) S'eS(B)

However, ((B) = di(B) + Y gcgp) £(S'), and so this implies rank(L) > 3d1(B) + $((B). By
criticality and Lemma ¢(B) > 2(d(B) — qo(B)), giving us our desired bound. O

This concludes the first rank- and union-bound of Section [3.1.1} Using this, and Lemma
we show our first result:

Theorem 4.5. Pr [Z/(p) €(0,¢)] < <(20¢2n3k3)k61/4)p

Proof. From the above lemmas, it remains to apply Lemma For a fixed critical subsequence
S with p active players, if p; > ps, then by Lemma the improvement of each step of the ap-
prozimate potential ¥ along the sequence will lie in (—e, 2¢) with probability (3¢e)4 ()~ (S)+p(S)/4,
Taking a union bound over all approximated sequences, this event holds with probability

kPG (nk)!09) (2, /€) US)=0(9) (3¢ ) ) —a0(5)+(S) /4

Noting that d(S) — qo(S) < k- p(S), and by criticality of S, E(S) < 2d(S) —2q0(S) < 2kp(S), so

Pr [Z'(p) € (0,6)] < k) (k)" (2n,/€) 15 =105 (3¢) US)~00(S)+p(5)/4
< 90k ®(S ( k¢)2kp (nk)k p(S) (p(S)/4
s
— ((20n3]€3¢2)k61/4)p( )
as desired. O

4.2 Rank Bounds and Union Bounds via Cyclic Sums

In this subsection, we will prove the second half of the results from Section [3 Unlike the rank
bounds of the previous section, all statements in this section hold for arbltrary game graphs.

Recall that, for a fixed BR sequence S, we have defined the matrix Q(S, o), whose columns
consist of sums of columns of L(S,0%) = {1, A2, ..., A¢}. We recall its definition here: Let (u, )
be a move which appears twice in S — possibly a (u,00) return move. Let 79 be the index of
the first occurrence of (u,i) in the BR sequence, setting 79 = 0 for return moves. Let 71,79, ...
be the indices of all subsequent moves by player u in the sequence, and suppose 7, is the second
occurrence of (u,4) in the BR sequence, or first, if it is a return move. Define g, ; := Z;n:l Arjs
noting that the g is omitted, and let Q(S, @°) be the matrix whose columns consist of the g’s.

We wish to show that Q(S,o") does not depend on the strategies of the inactive players.
Intuitively, this holds because we are taking a “cyclic sum” of the moves of a player u, and therefore
we are cancelling out the entering and exiting payoff values. Formally, note that if player u is moving
at time ¢, A; has only nonzero entries in (u,-)(+, ) rows. Furthermore, if w is inactive, and o is any
strategy played by u, then the (u,o)(w,cl) row of g, is given by

Qui((w,0)(w,09)) = D A ((w,0)(w,00)) = > Toi =o]~Toi " =0] = 0
Jj=1
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Thus, we have that to fully specify Q(S,o”), it suffices to know S and the initial strategy
profiles of the active players. It remains to show Q(S, ) has large rank, as follows.

Lemma 4.6. Fiz a BR sequence S and starting configuration a®. Then Q = Q(S, a®) contains at
least p2(S)/2 linearly independent vectors.

Proof. We begin by constructing an auxiliary directed graph G’ = (V, E’), where V is the set of
players, and E’ will be defined as follows: let (u, o) be some repeating move. We cannot have g, »
be the all-zero vector, as otherwise 0™ = o, which cannot hold for a BR sequence. For every
player w € V such that g((u,0)(w,0’)) # 0 for some o’ € [k], add the directed edge (u,w) to E’.

Let P, C V be the set of repeating players, and note that they all have non-zero out-degree.
Consider the following procedure: pick a vertex r; € P», and let 71 be the BFS arborescence rooted
at r1 which spans all nodes reachable from r1 in G’. Then delete V(T}) from G’ and repeat, picking
an arbitrary root vertex ro € Py \ V(T1), and get the arborescence T, on everything reachable
from ry. We may continue this until every vertex of P, is covered by some arborescence. For each
i=1,2,..., let Ti0 and TZ-1 be the set of nodes of T; which are of even or odd distance from r; along
T;, respectively. Let P! be the larger of V(1) N Py and V(T}') N Py, and P} := | J;2, P/

We must have that |Py| > |P»|/2 = p2(S5)/2. We wish to show that the collection V := {q,.. :
u € Py} is independent. Every u € Py must have some out-neighbour w. If u was not a leaf of the
arborescence it was selected in, then it must have some out-neighbour along the arborescence, and
we may choose this neighbour. This out-neighbour can not also be in Pj. In this case, g,,. will be
the only vector from V to contain a non-zero ((u,-)(w,-)) entry, since w was not taken in Pj. If,
instead, u was a leaf of its arborescence, then its out-neighbours must be in previously constructed
arborescences. Let w be any such neighbour, then g, . can not contain a non-zero ((u,-)(w,-))
entry, as otherwise v would have been in the other arborescence. Therefore, gq,,,. is the only vector
in V to contain a nonzero ((u,-)(w,-)) entry. Thus, V must contain a |V| x |V| diagonal submatrix,
and therefore has rank at least [V| > pa2(S5)/2, as desired. O

using the above lemma along with the appropriate union bound discounting the inactive players,
we show the following Theorem:

Theorem 4.7. Pr [A'(p) € (0,€)] < (2(nk)? k5 (nge)/4)’.

Proof. Fix S, 6% and let L = L(S,0°). Let A be the payoff vector of the network coordination
game. Let )V be a collection of p2(S)/2 independent vectors from Lemma Let g € V and recall
q = > i.; Ay, for some collection of indices ¢; < -+ < t;,. We have Pr[AL; (A, 4) € (0,¢)] <
Pr[(g, A) € (0,me)]. Since m < ¢, taking the collection of all g vectors and applying Lemma
we have

br ffl) i, 4) € 0, Eﬂ < Pr [/\qev (g, A) € (0,&)} < (Lge)P> )/

There are at most k(%) (nk)“) possible collections V. The quantity A’(p) assumes we are in a
critical subsequence, which implies £(S) = 2(d(S) — qo(S)) by Lemma Since £(S) = 2(d(S) —
q0(S)) < k-p(S), and py > py = p2(S) > 3p(S), we have

Pr [A'(p) € (0,€)] < k) (nk)S) (£ge)p2()/2
< n2k-P(S)k(2k+1)P(S)(Qkp)p(S)/4(¢€)p(s)/4

< (2(nk)2kk5/4(n¢e)l/4>p(S)

as desired. ]

16



4.3 Polynomial Smoothed Complexity for Complete Game Graphs

We have shown above that Zl(p) and A’(p) have vanishing probability of lying in (0,¢). In this
section, we use these results to show that the BRA will terminate in time polynomial in n*, k and
¢, with high probability, when the game graph is complete. The following lemma combines our two
previous results:

Lemma 4.8. With probability 1 — 1/O(¢*n®k*), every BR sequence of length 2nk must have an
improvement of at least € = O((qﬁ2n3k3)*4k*4)_

Proof. We will perform a case analysis based on the values of p;(S) and p2(S), with cases for
p(S) =n, p(S) <n and p1(S) = p2(S5), and p2(S) = p1(S).

If p(S) = n, we apply the rank bound of Corollary and take a union bound over all initial
strategy profiles, and all possible sequences to get

Pr[A’(n) € (0,6)] < K'(nk)2™ (¢e)"! < <k3kn2k¢>e)n /e (4)

This union bound over-counts the number of sequences with p(S) = n, but this isn’t a problem.
Setting € = ¢! (n?k?) 2k gives Pr[A’(n) € (0, e)] < ( 21k3)n_2.
In the converse case, we combine Theorems[4.5]and [4.7] then take a union bound over all possible

values of p to bound the probability for any sequence of the given length. As defined previously,
Al(p) = min{zl(p), A’(p)} and so,

Pr[A'(p) € (0,¢)] < <(20¢2n3k3)k61/4)p—|— (2(¢6)1/4n2k+1/4k2k+5/4)p < 9 ((20¢2n3k3)k61/4>p
(5)

Since any sequence of length 2nk must contain a critical subsequence, it suffices to set ¢ =

(20¢2n3k3)_4k_4, and taking the union bound over all choices of p, we get

n

1
Pr[A,, (200*n°k*) P <
[Aank € (0,€)] p; 0¢ = 200203k — 1

Combining the two cases of p = n and p < n gives us our desired result. O

This concludes the proof of the complete-game-graphs part of Theorem noting that ¢ > %
As outlined in Section and at the top of this section, this implies that with probability 1 —
1/poly(n, k,®), any correct implementation of the BRA will converge to a PNE of the network
coordination game in at most (nke¢)?*) steps.

4.4 Quasipolynomial Smoothed Complexity for General Game Graphs

In this section we show the quasi-polynomial running time when the game graph G is incomplete,
and thus prove the remaining part of Theorem [I.I, The analysis mostly uses the lemmas from
Section paired with the following definition and lemma from [ER17]:

Definition 4.5. Recall the random variable A from Definition Call a sequence of length ¢
log-repeating if it contains at least £/(5log(nk)) repeating moves (pairs). We denote as A”(¢) the
minimum total potential-improvement after any log-repeating BR sequence of length exactly .

Lemma 4.9 ([ER17], Lemma 3.4). Let Ay and A" (¢) be as above. Then Asyj := ming<p<sng A" (¢)
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The proof of the above lemma shows that any sequence on 5nk pairs must contain some con-
tiguous sub-sequence which is log-repeating. Thus, for the remainder of the analysis, it suffices to
bound A”(¢). Since a sequence captured by A”(¢) must have at least £/(5log(nk)) repeated terms,
it must have p, > £/(5klog(nk)). Therefore, as we have shown in the proof of Theorem 4.7, we
have Pr[A”(¢) € (0,€)] < k'(nk)!(£pe)?/10F10s(nk) Tt suffices, then to simply take the union bound
over all possible values of £.

Theorem 4.10. Given a smoothed instance of k-NetCoordNash with an arbitrary initial strat-
egy profile, then any execution of a BR algorithm where improvements are chosen arbitrarily will
converge to a PNE in at most ¢ - (nk)P¥1°80k) steps with probability 1 — (nk)~2.

Proof. As discussed above,
PT’[A//(E) c (07 6)] < k@(nk)€(£¢6)2/10k10g(nk)
1
< <k2n(5nk¢e)1/ (10k log("’“)) (¢ < 5nk)

< (2k3n2(¢)€)1/(10k10g(nk)))E' (51/10 < 2) (6)

Setting € = ¢~ 1(2n2k3) =2 10kl0s(nk) " thig gives

¢
Pr[A"(£) € (0,¢)] < (27;kg)>

Let As,r be the improvement in potential in any length 5nk BR sequence. Then using Lemma
and taking the union bound over all choices of £, we have,

&k " Zh 21.3\—4 (2712]{33)71 1 1
Pr{Asu € (0,6)] < Y Pr{A"(0) € (0,0] < ) (2n°K) ™" < — 22T = 22k 1S (k)2
=1 =1

Hence, with probability 1 — 1/poly(n, k) (over the draw of payoff vector A), all BR sequences
of length 5nk will have total improvement at least e. In that case, any execution of BR algorithm
makes an improvement of at least € every 5nk moves. Since the total improvement is at most 2n?,
we conclude that the total number of steps is at most 5nk - 2n%/e = 10n3k(2n2k3)20klos(nk) . ¢ —
¢ - (nk)©OF1o8(nk)) “and this occurs with probability 1 — 1/poly(n, k). O

This concludes the proof of the arbitrary-graphs part of Theorem noting that ¢ > % As
outlined in Section [3.1] and at the top of the previous section, this implies that with probability
1 —1/poly(n, k, ¢), any correct implementation of the BRA will converge to a PNE of the network
coordination game in at most (nke)C*108(k)) steps.

This completes our analysis of the smoothed performance of BRA for finding pure Nash equi-
libria in network coordination games. In the next section, we show that this result indeed holds in
expectation, and then go on to show a notion of smoothness-preserving reduction which allows us
to prove alternative, conditional, algorithms for this problem.

4.5 (Quasi)Polynomial Running time in Expectation

The analysis in the previous section establishes smoothed complexity of network coordination games
with respect to the with high probability notion. Another aspect of smoothed analysis is to analyze

18



the expected time of completion of the algorithm. Observe that the expected running time of
an algorithm can not be immediately concluded from the high-probability running time, and this
performance will depend on the explicit bounds computed. In this section, we provide a theorem to
obtain expected time results from the with high probability bounds. The results are presented in
a general form to allow application to any problem in PLS that has a bounded total improvement
in potential value. The following theorem is a generalization of the statement of a result found in
[ER17]. We include the analysis for completeness.

Theorem 4.11. Given a PLS problem with input size N, potential function range [-N™, K N"2],

and a local-search algorithm A to solve it, let d be the number of distinct choices the algorithm

has in each step and let A be the total size of the search space of the algorithm. For an instance

I drawn at random with mazimum density ¢, suppose the probability that any length-NP sequence

of impmving moves of A results in total improvement in the potential value at most €, is at most

ZNB (NTIN) (9" (N )1/9(N)Y2 . Then the expected running-time of the algorithm is O(p9 (V) . N+
g(N) - NI(N)9(N) n A). Here, f(N) ¢'(N) and g(N) are functions of N.

Proof. The maximum improvement possible before A terminates is the maximum change in the
potential function value, given by N™ + N"™.. For any integer t > 1, if the algorithm requires more
than ¢ steps to terminate, then there must exist some subsequence of length N? that results in an
improvement in the potential value of less than N#(N"2 + N™)/t < 2NA+max{rari} /t We denote
r:= max{ry, ra}.

We define a random variable T as the number of steps A requires to terminate. Using the no-
tation A(N?) to denote the minimum total improvement in a length-N* sequence of the algorithm
A, this gives the probability of A running for more than ¢ steps as:

N7 B+ VI @
Pr[T > #] < Pr[A(N?) € (0, N"8/¢)] <Z<Nf <¢g<N : > ) ‘
q=1

We define t = ~i, for v = NINIW) (gg' (N) N+8Y = 39’ (N) NF(N)9(N)+6+7 - and compute the
probability of T' > ~i for any 1nteger i

N? r 1/9(N) [e'e] /(N) fo%) /
Z(<> )< e 35 (1) <2
q=1

7
q=1 v

We now sum over all values of ¢, by using that Pr[T > ¢] < Pr[T" > ¢ - [t/v]], and compute the
expected time steps as:

Ay v A/

ZPrT>t <ZZPrT> i+1)y] < Z (N)’yzO(g(N)Jy-lnA)

i=1 t=1 =2

Thus, replacing the value for v, the expected runtime is at most O(¢9 V) NO+7g(NYNS(N)9(N) 1 A).
O

Corollary 4.12. The smoothed expected time for BR to terminate for all network coordination
games is polynomial in (n(klog(”k)), ?).

Proof. From @ in Theorem we know that the probability that the minimum improvement
in a fixed BR sequence of length 5nk is no more than € is at most ZEmk (2023 (pe) /(10K log(”k)))l.
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Applying Theorem for N = nk and A < k", we get f(N) =O(1), N"+P < N3 ¢(N) =1
and g(N) = O(klog(nk)), and the expected running time is
O(¢(nk)?VO(klog(nk)) (nk)O OFlsM) i () = O(¢nOFleak)),
0

Corollary 4.13. For complete graphs, the smoothed expected time for BR to terminate for network
coordination games is polynomial in (n*, ¢).

Proof. From in Lemma for the case of complete graphs when a BR sequence has all active
players, we have:

Pr[A(p) € (0,¢)] < (kgkn%d)e)n / de < zn: <k3kn2k¢l/261/2>i / de.
=1

Similarly, from in Lemma the probability that the minimum improvement in a BR
sequence of length 2nk is at most ¢, is given by:

PriA(p) € (0,)] < i: 2 ((20¢2n3k4)k51/4)p
p=1

Combining these sums, we get the probability that a BR sequence of length 2nk has improvement
at most € is:

n n

Pr[A(p) € (0,€)] < max 22 ((20¢2n3k5)k61/4)p,z (kgkn2k¢1/2€1/2)i
p=1 i=1
< D (k) rk(gre) e,

=1

for cg < 5,c0 <8 and c3 < 4.

Applying Theorem .11} for N = nk, N7 < N3 and A < k", we get f(N) = O(k), ¢'(N) = 8k
and g(N) = O(1). The expected running time is O(¢%* - (nk)? - O(1) - (nk)®®nin(k)), which is
polynomial in (n*, ¢*). O

5 Smoothness-Preserving Reductions to Local-Max-Cut and -Bisection

Recall Definition in Section where we have defined a notion of smoothness preserving
reductions. P admits a smoothness-preserving reduction to Q if they admit a Karp reduction where
the real-valued parameters of the reduced instance are given by a full-rank, linear combination
of the real-valued parameters of P, with coefficients of polynomial size. These preserve density
bounds, and a weaker form of independence. The reduction is strong if the linear combination is
simply a rescaling of the entries, i.e. given by a diagonal matrix. We also recall the definitions of
local-max-cut and local-max-bisection, which consist of finding a cut in a graph whose cut value
is maximal up to flipping one node across the cut, or swapping a pair of nodes across the cut,
respectively.

In this section, we prove that smoothness-preserving reductions are sufficient to translate
smoothed-efficient algorithms, and give the two reductions outlined in Section proving that
they are smoothness-preserving.
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5.1 Smoothness-Preserving Reductions

We begin by including, for completeness, a proof of Proposition[2.1]and Lemma/[3.2] which is exactly
the proof given in [ER17], a simplification of the proof from [R6g0§].

Proposition ([R6g08]) Let X € R be a random vector such that the joint probability on
any a < d coordinates of X is upper-bounded by ¢* at all points, and let M € R be full-rank,
with entries which are multiples of n, for £ < d. Then the random variable Y := M X also has
bounded joint density fy (y) < (¢/n)¢ for all y € R,

Proof, from [ER17]. Let eq, ..., eq be the standard basis vectors of R?, and let A1, ..., Ay denote
the (linearly independent) rows of M. Without loss of generality, {A1, ..., A, €41 ..., €4} is a
basis for R¢, and let M be the matrix whose rows are given by this basis. Let & € R?, and define
Ce(x) = [x1, 1 + €] X - X [wg, 3¢ + €], a rectangular region in R, and C.(x) := C.(x) x R**. We
have Pr[MX € Ce(z)] = Pr[MX € Cc(x)] = Pr[X € M~'Ce(z)].

Observe that M ~1 is the identity on the coordinates d — ¢, ..., d, since M is as well. Thus, we
have that M ~'C.(x) = C' x R?~* for some region C’ of volume at most €‘/n’. Therefore,

Pr[X € M_lée(w)] = //deh---,Xe : /]Rd—l de£+17---7Xd
< ¢t (e/m) -1

Where the first integral bound comes from our assumption on the joint densities of collections of
entries of X, and the second is simply integrating a probability density over the whole domain.

Now taking the limit
Pr[MX € Cc(x)

i — @y < @

which gives our desired bound on the density. O

Lemma ([R6g08]) Let X € R? be a random vector such that the joint probability on any
a < d coordinates of X is upper-bounded by ¢* at all points. Let M be a rank r matriz in nZ*¢,
i.e. all entries are multiples of n. Then the joint density of the vector M X is bounded by (¢/n)",
and for any given by, ba, ..., by € R and € > 0,J; C R have measure €, then

Pr [MX € b1, by 4+ €] X - X [bg,be + €] | < (de/n)" (7)

The proof of Proposition (before taking the limit) is a proof for this lemma. We may now
proceed to show that our definition of reduction does indeed preserve smoothed analysis results.

Lemma 5.1. Let Q be a search problem with (quasi-)polynomial smoothed complexity, as defined
in Section [2.4 Let P be a problem which admits a strong smoothness-preserving reduction to Q,
given by f1, fo, M, as in Definition . Then P has (quasi)polynomial smoothed complexity.

Proof. The algorithm for instances of P is as follows:
1) Perform the randomized reduction,
2) Run the smoothed-(quasi-)polynomial-time algorithm for Q on the reduced instance,
3) Compute the solution to the instance of P given the solution to the reduced problem.

By the definition of smoothness-preserving reductions and (quasi-)polynomial smoothed com-
plexity, step (2) will always correctly solve the reduced instance in finite time, and therefore step
(3) will output a correct solution to the instance of P.
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It remains then to show that the algorithm runs in polynomial time with high probability, which
we do via Markov’s inequality, to control for the effect of the newly introduced randomness. Let
(D, X) be an arbitrary instance of P where D is fixed, and X is a random vector whose entries
are independently distributed with density bound ¢. Let R be a random vector also independently
distributed with density bound ¢ = poly(¢,|D|,|X|). Without loss of generality, ¢’ > ¢. Since
the reduction is strong, and the matrices are assumed to have integer entries, and therefore the
entry-wise densities of the rescaling M - (X o R) also has densities bounded by ¢'.

Let A be the smoothed efficient algorithm for Q. Thus, there exist constants ¢, > 0 such
that on random input (C,Y’) with density bound ¢', A runs in time (¢/|C||Y])¢ with probability
1—1/|C|¢. By definition, | f1(D)| < poly(|D|,|X|). We wish to show that with 1—1/poly(|D|, |X|)
over the randomness in X and R, the reduced instance given by C := f1(D) and Y := M - (X o R)
will be solved by A in time poly(¢,|D|,|X|), or quasi-polynomial time. By the assumptions on the
performance of A for instances of Q, this holds by definition, since the entries of M (X o R) are
independently distributed, and ¢', |C|, and |Y'| are polynomial in ¢, |D|, and | X]. O

Corollary 5.2. Let Q be a search problem with (quasi-)polynomial smoothed complexity when the
wput is arbitrarily distributed with a bound on the joint demnsity as in the statements of Proposi-
tion[2.1) and Lemmal[3.9. Let P be a problem which admits a weak smoothness-preserving reduction
to Q, then P has (quasi-)polynomial smoothed complexity.

The proof of this corollary is identical to the above, combined with Proposition [2.1

Corollary 5.3. Let P be a problem which admits a weak smoothness-preserving reduction to local-
maz-cut, then P has quasi-polynomial smoothed complexity. If it admits a weak reduction to local-
maz-cut on a complete graph, then it has polynomial smoothed complexity.

Proof. Following the discussion from Section the proofs of the local-max-cut smoothed results
from [ER17, [ABPWI7] consist of applying Lemma directly to the edge weights of the graph,
and finding bounds on the rank of the linear transformation. By Proposition [2.1], a weak reduction
satisfies the conditions for the application of Lemma [3.2] and therefore the local-max-cut satisfies
the conditions of the previous corollary, as desired. O

We note, as discussed in previous sections, that it would also have sufficed for X to have joint
density bounded by ¢/*¥|. Observe that if it were possible to weakly reduce k-NetCoordNash to local-
max-cut, then this would imply a (quasi-)polynomial smoothed complexity for k-NetCoordNash,
where the degree of the polynomial does not depend on k. Unfortunately, we only achieve a weak
reduction to local-max-bisection, which we believe has similar smoothed complexity to local-max-
cut, though this is not as of yet known. We leave this as an open problem.

5.2 Reduction from 2-NetCoordNash to Local-Max-Cut

In this section, we give our first reduction from 2-NetCoordNash to local-max-cut, and show it
satisfies the conditions of a smoothness-preserving reduction.

Let G = (V, E) be a game graph, with payoff vector A € [0.5,1]*”]. As the inputs are assumed
to lie in [—1,1], this is without loss of generality since we can make this transformation while
preserving all distributional assumptions, and at most quadrupling the probability density in each
coordinate. As defined in Section we construct a cut graph H = (V U {s,t}, E'), where E’
consists of the edges E over V, with an additional su and ut edge for all v € V. We will define
the edge weights below, where w(u,v) denotes the weight of edge uv € E’. Let I'(u) denote the
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neighbours of u in graph G, and W be a |V|-dimensional vector of extra randomness, assumed to
be uniformly distributed in [—1, —0.5]V]. We set:

w(u,v) = %(A((u, 1)(v,2)) + A((w,2)(v, 1)) — A((w,1)(v, 1)) — A((u, 2)(v, 2))) Yu,v €V (8a)

wis,u) = > [(A(,2)(0,1) + A((,2)(v,2))) + W ()] YueV (8b)
viuvelR
w(u,t) = Z [% (A((u,1)(v,1)) + A((u, 1)(v,2))) +E(u)} YueV (8c)
RIS
w(s,t) = (1) 3 [%(A((u, 1)(0,2)) + A((u,2)(0, 1)) + W (w) + W (v) (8d)
wweE

Observe that the above are linear combinations of the input values, and the coefficients are
O(|E|)-sized multiples of n = 1.

Lemma 5.4. The above construction satisfies the following conditions:
1. Cut values of s-t cuts are equal to the potential function of the associated strategy profiles,
2. All locally maximal cuts are s-t cuts,
3. The construction s full-rank

Proof. Let (S,T) be a cut such that s € S and t € T. We will do a quick case analysis for each
payoff term. Note first that the W terms get cancelled by the st edge, since they must appear
exactly once for s or t. We say u is “playing ¢ according to the cut” if u € S wheni=1orifueT
when ¢ = 2. Suppose u is playing ¢ and v is playing j, then the A((u,i)(v,j)) term is added with
total weight 1 in the su, sv, ut, and vt edges, and if ¢ # j, it is also added and removed in the uv
and st edges, respectively, so it appears with total weight 1. If u is playing ¢ but v is not playing j,
then A((u,4)(v,j)) is added with weight 3 in the su and ut edges, and it is subtracted with weight
% in wv if i = j, or st if ¢ # j. Finally if w is not playing ¢ and v is not playing j, then the term
does not appear if ¢ = j. Thus, the only terms that appear are the correct ones, and they appear
with weight 1.

To show condition 2, first recall that all entries of W lie in [—1,—0.5], as it is uniformly dis-
tributed in [—1, —0.5]|V|. As observed above, in any s-t cut, the W terms are cancelled out, and by
our assumption on the payoff values, we have cut values between 3|E| and |E|. Consider any cut
(S,T) where s,t € S. Then for every v € T, we are contributing +2W (u) - |I'(u)| to the cut from
su and ut edges, and at most four A terms for each uv edge with weight % each, so the cut value
must be non-positive, and switching node t to the other side will improve the cut value. Therefore,
all locally maximal cuts are s-t cuts.

To show condition 3, we explicitly write out the matrix and show it has full row-rank by
induction on the number of players. Let Id,, denote the n x n identity matrix, 1,, denote the
1 x n row of 1’s, v denote the vector of |I'(u)| values, and T' be the diagonal matrix with diagonal
~. Let B; € {0, 1}|V‘X4‘E| denote the payoff-node incidence matrix of GG, where the 1’s are in
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the(u, (u,i)(v,-)) entries. We have

w(u,v) E
—ld® (-1,+1,41,-1) | © ﬁEEZ BEZ%;
: A((u,2)(0,1)
wlu,t) | 1 h ] A 22) (9)
: )
: 1®(0,—1,-1,0 —2
w(s,t) ( ! ! :
- B 2r W(u)
w(s,u) :

Note that By and B3 have disjoint support, and B; + Bj is an edge-node incidence matrix, tensored
with (1,1,1,1). We will show by induction on |V| that this matrix is full-rank. For n = 2, the
matrix is explicitly

-1 1 1 -1 0 O
1 1 0 0 2 0
10 1 0 0 2
0O -1 -1 0 -2 =2
0 0 1 1 2 0
0o 1 0 1 0 2

which can be verified to have rank 6. Suppose then that the rank property holds for |[V| =n — 1,
and we introduce a new node v. Then the new edges introduced to the matrix, restricted to the
columns for edges with v and W (v), are of the form

-1 +41 +1 -1 0 0 0 0 --- 0
o o0 o0 O0O -1 41 41 -1 --- 0
+1 +1 0 0 +1 +1 0 0 -+ | =2,
0 0 +1 41 0 0 +1 +1 --- | =2,

which has full row-rank. Since the entries in the omitted columns are all 0, then we have a block-
upper-triangular matrix where the first diagonal block is the matrix for the graph V' \ v, and the
second diagonal block is this above matrix. Therefore, by induction, the matrix has full row rank,
as desired. O

5.3 Reduction from k-NetCoordNash to Local-Max-Bisection

We present in this section the final reduction from k-NetCoordNash to Local-Max-Bisection.

The reduction will introduce some extra-randomness variables with density 2nk. Recall, given
a game graph G = (V, E) and payoff vector A € RIF |k2, we have constructed in Section the cut
graph H = ({80, 51, - - -, Sp(k—2),t} UV x [k], E), where there is an edge {s., (u,i)} and {(u,i),t}
forallu e V, i€ [k],and 0 < z < n(k—2), there is an edge {(u, 1), (u, )} for all i # j € [k], and an
edge {(u,1), (v,j)} for all wv € E and i,j € [k]. Note that for complete game graphs, the resulting
cut graph is also complete. We say a bisection (S,T) is valid if |S| = |T| = |V(H)|/2, s, € S for
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all z, t € T, and for each u € V, there is exactly one (u,-) in S. To each valid bisection, we can
associate the natural strategy profile o (S, T) where o, =i if (u,i) € S, which is well-defined.

We wish to choose edge weights such that, as in the previous reduction, (a) the cut value of
a valid bisection is equal to ®(o(S,T)), (b) all locally maximal bisections are valid, and (c) the
construction is full-rank. As in the previous section, we assume without loss of generality that the
entries of A are supported in [2.5,3]. Let

o W*(u,i) ~U[—2,—3], i.i.d. for all 0 < z < n(k—2), u € V, and i € [k]

o R(u,ij) ~U[-1,—3] iiid. for allu € V and i # j € [K]

o Y(u,i) ~U[2,2.5] i.i.d. for all u € V and i € [k]

o A5 ~ U0, 51r) d.i.d. for all 0 < z < n(k — 2).
Note that the Aj’s have density 2nk, and all other variables have constant density. Define A, :=
Z:(:koq) Af. Let So := {s0, - - -, Sp(k—2)}, and for any valid cut (S,T), let ¥(S5) := ®(a(S,T)). We
will also extend v to be defined on invalid cuts. If there is no (u,-) node in S, say that 0,(S) =0,
and in the definition of ¥(S5), let A((u,7)(v,0)) := Y (u,i) for all u,v € V and i € [k], and let

A((u,0)(v,0)) := A, for all u,v € V. Let 6(5) denote the cut value of (S,V'\ S). We will construct
edge weights with the following properties:

(i) For every valid (S,T), §(S) = ¢(S). (From above)
(ii) For every u € V, and i # j € [k], 6(So U {(u,1), (u,7)}) = 2R(u, ij)
(iii) For every u € V, i € [k], and 0 < z < n(k — 2), w(sz, (u,1)) = W?(u,1).

Furthermore, we simply assume that for all 0 < z < 2/ < n(k — 2), the weight of the s.s,, edge
is given by the random variable W(z, 2z’), which are distributed i.i.d. uniformly along [—1, —0.5].
The correctness of the reduction will be proved using two lemmas, established using the following
claim.

Claim 5.5. Condition (i) is satisfied if (a) 6(SoU{(u,i)}) = ¥ (SoU{(u,i)}) for all players u and
1<i<k, and (b) w((u,i),(v,5)) = Y (u,i) = Y(v,5) — A((u,)(v, 7)) — Ag-

Proof. Let S := Sy U {(u1,i1), ..., (ug,i¢)}. We begin by showing the following:
0
() = | 22080 U{(uzi)})] = (€= 1)e(S0)
j=1

= > 2[A(u)(0,0)) + A((u, 0)(v, 1)) — Ag — A((u, 8)(v, 5))] (10)

(u,9),(v,5)€S
wek

l

6(5) = [ 32080 U{(uyin)h)] = (€= 1oSo) = D2 2w((wi), (v,)) (11)
Jj=1 (u,1),(v.4)€S
wek

For ([L0), note first if there is no uv edge in the game graph, then A((u,-)(v,-)) does not appear
on either side of the equality, and we may restrict our attention to pairs which form game edges.
Now, for every v and w which do not appear in S, the left-hand-side has 2A((v, 0)(w,0)), and the
right-hand-side has 2(¢ — (¢ — 1)) A, from the first line. If u appears with strategy i, and v does not
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appear in S, then the left-hand-side has 2A((u,7)(v,0)), and the right-hand-side has 2A((u,7)(v,0))
from the ¥ (SoU{(u,7)}) term. If u appears with strategy i, and v appears with strategy j, then the
left-hand-side has 2A((u,%)(v, j)), and the right-hand-side has 2A((u,)(v,0)) and 2A((u,0)(v, 7))
from the ¥(Sp U {(u,i)}) and ¥(Sp U {(v,j)}) terms which are canceled out by the second line,
2(0—2—(0—1))A, terms from the first line which is canceled out by the second line, and the term
2A((u,7)(v, 7)) from the second line. A similar argument shows the validity of (L).

Since condition (i) requires that 7(So U {u,i}) = 0(So U {(u,4)}), this is necessary, and along
with §(Sp) = 9(Sp) from (14), the above analysis shows it is sufficient. We are required to set
w((u,i)(v, 7)) = A((u,4)(v,0)) + A((u,0)(v, 7)) — Ay — A((u,1)(v, 7)), which is equal to Y (u,i) +
Y (v,5) — Ay — A((u,7)(v,j)). Observe that this is supported on the interval [1,2.5]. O

Lemma 5.6. There exist edge weights w which satisfy conditions (i), (ii), and (iii). Moreover,
these are a full-rank, square, integer-valued, linear combinations of the entries of A, Y (u,i), A§,
R(u,ij), W?(u,i), and W(z,2').

Proof. We may ignore the rows indexed by s.s./, as they depend only on the W values, and these
values do not appear anywhere else, so they are independent, and do not affect the dependence
of other rows. Next, we derive edge weights such that the conditions of Claim hold, using the
following system:

w(sz, (u, 1)) = W*(u, 1) (by def’n) (12)
w((u,9)(v, 7)) = Y(u, 1) + Y (v, ) = A((u,7)(v,)) = Ag (13)
n(k—2) k n(k-2)
$(So) =0(So) = > wlse,t)+ > > W= (u, i) (14)
z=0 ueV i=1 2=0
n(k—2) k n(k—2)
== Z w(sz, ) ZZ W?*(u, 1)
z=0 ueV i=1 2z=0
k
Vz we choose : w(sz,t) = ¥(Sp) — > > W(u,i) (15)
ueV i=1

2R(u, i) = 6(So U {(u, 1), (u,7)}) = 0(So U{(u,2)}) + 6(So U{(u,5)}) — 6(S0) — 2w((u,7)(u, j))
= w((u,1)(u,)) = 5(¥(SoU{(u,1)}) +9(So U {(u,5)}) = ¥(So) — 2R(u,i,5))

(16)

Y(SoU{(u,i)}) =

n(k—2)
B(SoU{(w i) = D wlset) +wl((w )+ > | LI WHw,5) + w((w,i)(v,))]
z=0 (0,5)#(u,1)
n(k—2)
— w((w,),6) = $(SoU{w)}) = Y wisnt) = 3 [ S WA, ) + wl(w,)(v,5)]
2=0 (u 1) #(v,5)

= (S0 U {(u,8)}) — w(So) + 20 W2 (u, ) — 2 (wi)£(w,g) W, 9)(v, 7)) (17)

We observe first that contains as terms the previous numbered equations. Thus, it suffices
to perform simple row-elimination to get w((u,i),t) = ¢(So U {u,i}) — >, >, W*(v,j). Now,

26



let G = (V,E) be the underlying game graph, and let d(u) be the degree of w in G. Then
P(So) = 2|E| Ay, and ¥ (So U {(u,7)}) = 9¥(So) + 2d(u)[Y (u,i) — Ay]. Finally, we have

w((u,7)(v, 7)) Aun(i,7)
‘E . —ld| g2 0 * =L\ Ejk2 xn(k—2)+1 0 : _
w((u, ) (u, j)) - R(u,ij)
: 0 —Id_/x * * 0 :
n(5)
w((u,),t) Y (u,1)
: = 0 0 2d(u)ldy g * ld®1
w(sf’t) 0 0 0 2|E| - dp(e_2ys1 | —1@Id £0
w(s, (u,1)) 0 0 0 0 ld® 1 WZ(u,i)
(18)
Where ® denotes the tensor product, namely,
1 1 0 oo - 0 -- 1 0 0 1 0 0
0 o1 .. 10 -+ 0 .- 0 1 0 0 1 0
d®l=]o 0 0 0o 1 -~ 1 .- 1®Id= . ) )
: Do 00 - 100 o 1

It is easy to check that the x values are integral, since the 1 values must be even combinations
of the A values. Therefore, after the row-operations leading to w((u,7),t) values, the matrix is
upper-triangular, which implies that the system is full-rank, square, and integral, as desired. [

Lemma 5.7. If conditions (i), (i), and (iii) are satisfied, then all local-maz-bisections are valid
cuts, and their associated strategy profiles are Nash equilibria.

Proof. Recall that we have assumed that 0.5 < Ay, (7,5) < 1 for all edges uv and for all 1 <i,j5 <k,
that 0 < Ay,Y(u,i) < 0.5 for all players u and 1 < ¢ < k (Since 4, = ZZ(:kO_Q) Af, and the
latter is contained in [0, 317)), and that —1 < R(u, ij), W*(u, i), W(z, 2') < —0.5 for all players u,
1<i<j<k0<z<2<n(k-2).

We will show that from any non-valid cut, there will be a single flip operation towards a valid
cut which improves the total cut value, then argue that they may be paired up into swap operations.

Fix a bisection (5,T"), and consider the following cases:

Case I. t € T, and S contains at least half the s.’s, but s, € T for some z. — Let s, in
T, we argue that (S U {s,}) —d(S) > 0. The two cuts may only differ on edges incident to s,.
The positive term includes w(s,,t), W?(u, i) for all (u,i) ¢ S, and the W (z, 2’) for all s,» € T, and
the negative term includes W?(u,4) for all (u,i) € S and the W(z, 2’) for all s,, € S. However, we
know from that w(sz,t) = ¥(S0) = 2_ () W*(u, ). Therefore, we get

5(SU{s.})—48(S) = 2[E]\A£J =2 Wi (wi)+ Y W(zd)— > W(z2)

>0 (u,i)€eS z:5,€T z:5,€S
Now, note that, since these are bisections, |{(u,7) : (u,i) € S} + {7z’ : s.» € S} =n(k—1)+ 1, so

—2 > Wi(ui)— > W(z,7) > i(nk—1)+1)

(u,i)€eS 2:5,€8
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and ) .. o W(z,2') > —(n(k—2)+1), since we have assumed more than half lie in S, so therefore
the above sum is non-negative, and moving s, into S was an improvement.

Case II. t € T and S contains fewer than half the s,’s. — We wish to show that in this
case, 0(S U {t}) — 6({S}) > 0. Since there are fewer than 3(n(k — 2) + 1) s, nodes in S, there
must be at least 1(nk — 1) (u,i) nodes on the S side. Without loss of generality, we may assume
n or k is even, and so at least half of the (u,7) nodes are in S. Therefore, it would suffice to show
that w(t, (u,i)) < 0, and w(s,,t) > 0, so t would benefit from moving to the side with fewer s,
and more (u,i) nodes. We have w(s.,t) = ¥(So) — > ,cv Zleﬂz(u,i). Since W7*(u,i) < 0, and
¥(Sy) = 2|E|k? - Ay > 0, we have that w(s,,t) > 0. Conversely,

w(t, (u,)) = $(So U{(u,)}) = $(S0) + 052 WA (u, 1) = ¥y oy w (w1 (v, )
< > Vi) -t =2 = 5=k Y (52 = Y w((w,i)(u,5)

S viUvER j#i
<d(u)- 35— gd(u) — In(k —2)

For k£ > 3 and n > 2k. This concludes the proof of the claim.

Case III. t € T, S contains at least half of the s,’s, and also (u,i) and (u,j) for some
u and i # j. — Recall from that

w((u,d),t) = (S0 U{ (u,)}) = (o) + X0 W, ) = 3 iy 0y w1 (0, )
> S W (u,4) — 3 iy oy W (D) (0, 1))
Now,

5(5)- <S\{< )
- D0+ 3 W) - 3 W )+ Y w((w)wd) — Y w(u,)(v,)

5,€8 s,€T (v,0)#(u,j)ES (vi)eT
=-2 sz(ua.])_2 Z U)((’LL,])(U,Z))
s, €T (v,3)#(u,j)ES
S%’SOQT‘—‘{(U,Z)#(U7J>€S’U#’U,}‘— Z ’LU(('LL,])(’LL,Z))
i#j:(ui)ES

Note that, since the cut is a bisection, we have |[{(v,7) # (u,j) € S:v # u}| =n—14+ S NT],
and also w((u,7)(u,7)) > 0. Therefore the sum overall is > 0 if n > k — 1, as desired.

Therefore, from any non-valid cut, it is always an improvement to (1) ensure that ¢ is opposite
the majority of s, nodes by swapping it with some redundant (u,i) node, which must exist, (2)
ensure that all s, nodes are on the same side by swapping them with redundant (u,4) nodes, which
must exist. If all the s, are on one side, and t on the other, there must be exactly n nodes of the
form (u,i). If some player appears twice, then another player does not appear, and it is in our
interest to swap the redundant node with any node of the missing player. Entering the node of
the missing player into the cut is an improvement because all Y and A, values are smaller than all
in-game payoffs, with probability 1. Therefore, all locally-maximal bisections are valid.

Note that we have required A§ to be distributed over the interval [0, Q%k), so the density bound
must be at least 2nk, which is polynomial. O
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Claim [5.5] and Lemmas [5.6] and prove the correctness of the reduction, thus establishing
the following theorem.

Theorem 5.8. There is a smoothness preserving reduction from k-NetCoordNash to Local-Maz-
Bisection. The reduction maps k-NetCoordNash instances defined on complete graphs to Local-
Mazx-Bisection instances on complete graphs.

6 Additional Related Work

Smoothed Analysis. The work of Spielman and Teng [ST04] introduced the smoothed analysis
framework to study good empirical performance of classical Simplex method for linear programs
(LP). They showed that introducing independent random perturbations to any given (adversar-
ial) LP instance, ensures that the Simplex method terminates fast with high probability, with
polynomial dependence on the inverse of the magnitude of perturbation. Performance on such
perturbed instances has since been known as smoothed complexity of the problem—one of the
strongest guarantees one can hope for beyond worst-case analysis. In the past decade and a half,
much work has sought to obtain smoothed efficient algorithms when worst-case efficiency seems in-
feasible [DMadHR.™03, BV04, [MR05, RV0T7, [AV09, [ERVT14, [ERI7, [ABPWIT], including for integer
programming, binary search trees, iterative-closest-point (ICP) algorithms, the 2-OPT algorithm
for the Traveling Salesman problem (TSP), the knapsack problem, and the local-max-cut problem.

Worst-case analysis of equilibrium computation. There has been extensive work on various
potential games, equivalently congestion games (e.g., [Ros73, MS96, RT02l [FPT04, [CMNO5]), cap-
turing routing and traffic situations (e.g., [Smi79, [DN84], Rou07, [HS10, [HHKS13, [ADTW03]), and
resource allocation under strategic agents (e.g., [JT04, [F'T12al [FT12b]). Unlike general games, ex-
istence of the potential function ensures that these games always have a pure NE [Ros73]. Finding
pure NE is typically PLS-complete [FPT04, [CD11], while finding any NE, mixed or pure, is known
to be in CLS (Continuous Local Search) [DP11], a class in the intersection of PPAD (Polynomial
Parity Argument on Directed graphs) and PLS. Another series of remarkable works have stud-
ied the loss in welfare at NE through the notions of Price-of-Anarchy and Price-of-Stability (e.g.,
[KP99, RT02], [CKO5, IADG™06, IADK™08, [AFM09, [RSTT17]). Our approach should help provide
ways to obtain smoothed efficient algorithms for these games.

Worst case complexity of NE computation in general non-potential games has been studied
extensively. The computation is typically PPAD-complete, even for various special cases (e.g.,
[AKV05, [CDT06L, Meh14, FTCI10]) and approximation (e.g., [CDT06a, Rubl8]). On the other
hand efficient algorithms have been designed for interesting sub-classes (e.g., [KT07, [TSO7, TKL™11,
AGMS11, [CDT1, [CCDPT15, IADH ™16, BBIT, Barig]), exploiting the structure of NE for the class
to either enumerate, or through other methods such as parametrized LP and binary search. For
two-player games, Lipton, Mehta, and Markakis gave a quasi-polynomial time algorithm to find
a constant approximate Nash equilibrium [LMMO03]. Recently, Rubinstein [Rubl7] showed this
to be the best possible assuming exponential time hypothesis for PPAD, and Kothari and Mehta
[KM18] showed a matching unconditional hardness under the powerful algorithmic framework of
Sum-of-Squares with oblivious rounding and enumeration. These results are complemented by
communication [BRI7, [GRI8] and query complexity lower bounds [Babl6l (GR16, [FS16]. Lower
bounds in approximation under well-accepted assumptions have been studied for the decision ver-
sions [GZ89, [CS08, HK11, BKWI5l DFS16].

Acknowledgment. We would like to thank Pravesh Kothari for the insightful discussions in the
initial stages of this work.
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