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Abstract

We study the problem of approximating maximum Nash
social welfare (NSW) when allocating m indivisible
items among n asymmetric agents with submodular val-
uations. The NSW is a well-established notion of fair-
ness and efficiency, defined as the weighted geometric
mean of agents’ valuations. For special cases of the
problem with symmetric agents and additive(-like) val-
uation functions, approximation algorithms have been
designed using approaches customized for these specific
settings, and they fail to extend to more general set-
tings. Hence, no approximation algorithm with factor
independent ofm is known either for asymmetric agents
with additive valuations or for symmetric agents beyond
additive(-like) valuations.

In this paper, we extend our understanding of the
NSW problem to far more general settings. Our main
contribution is two approximation algorithms for asym-
metric agents with additive and submodular valuations
respectively. Both algorithms are simple to understand
and involve non-trivial modifications of a greedy re-
peated matchings approach. Allocations of high valued
items are done separately by un-matching certain items
and re-matching them, by processes that are different
in both algorithms. We show that these approaches
achieve approximation factors of O(n) and O(n logn)
for additive and submodular case respectively, which is
independent of the number of items. For additive val-
uations, our algorithm outputs an allocation that also
achieves the fairness property of envy-free up to one
item (EF1).

Furthermore, we show that the NSW problem un-
der submodular valuations is strictly harder than all
currently known settings with an e

e−1 factor of the hard-
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ness of approximation, even for constantly many agents.
For this case, we provide a different approximation al-
gorithm that achieves a factor of e

e−1 , hence resolving
it completely.

1 Introduction

We study the problem of approximating the maximum
Nash social welfare (NSW) when allocating a set G
of m indivisible items among a set A of n agents
with non-negative monotone submodular valuations vi :
2G → R+, and unequal or asymmetric entitlements
called agent weights. Let Πn(G) denote the set of all
allocations, i.e., {(x1, . . . ,xn) | ∪i xi = G; xi ∩ xj =
∅,∀i 6= j}. The NSW problem is to find an allocation
maximizing the following weighted geometric mean of
valuations,

argmax
(x1,...,xn)∈Πn(G)

(∏
i∈A

vi(xi)ηi
)1/

∑
i∈A

ηi

,

where ηi is the weight of agent i. We call this the
Asymmetric Submodular NSW problem.1 When agents
are symmetric, ηi = 1,∀i ∈ A.

Fair and efficient allocation of resources is a cen-
tral problem in economic theory. The NSW ob-
jective provides an interesting trade-off between the
two extremal objectives of social welfare (i.e., sum
of valuations) and max-min fairness, and in contrast
to both it is invariant to individual scaling of each
agent’s valuations (see [Mou03] for additional charac-
teristics). It was independently discovered by three
different communities as a solution of the bargaining
problem in classic game theory [Nas50], a well-studied
notion of proportional fairness in networking [Kel97],

1In the rest of this paper, we refer to various special cases of
the problem as the α µ NSW problem, where α is the nature
of agents, symmetric or asymmetric, and µ is the type of agent
valuation functions. We skip one or both qualifiers when they are
clear from the context.
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and coincides with the celebrated notion of compet-
itive equilibrium with equal incomes (CEEI) in eco-
nomics [Var74]. While Nash [Nas50] only considered
the symmetric case, [HS72, Kal77] proposed the asym-
metric case, which has also been extensively studied,
and used in many different applications, e.g., bar-
gaining theory [LV07, CM10, Tho86], water alloca-
tion [HdLGY14, DHYZ16, DHY17, DWL+18], climate
agreements [YvIWZ17], and many more.

The NSW problem is known to be notoriously hard,
e.g., NP-hard even for two agents with identical addi-
tive valuations, and APX-hard in general.2 Efforts were
then diverted to develop efficient approximation algo-
rithms. A series of remarkable works [CG15, CDG+17,
AGSS17, AMGV18, BKV18, GHM19, CCG+18] pro-
vide good approximation guarantees for the special sub-
classes of this problem where agents are symmetric and
have additive(-like) valuation functions3 via utilizing in-
genious different approaches. All these approaches ex-
ploit the symmetry of agents and the characteristics of
additive-like valuation functions,4 which makes them
hard to extend to the asymmetric case and more general
valuation functions. As a consequence, no approxima-
tion algorithm with a factor independent of the number
of items m [NNRR14] is known either for asymmetric
agents with additive valuations or for symmetric agents
beyond additive(-like) valuations. These questions are
also raised in [CDG+17, BKV18].

The NSW objective also serves as a major focal
point in fair division. For the case of symmetric agents
with additive valuations, Caragiannis et al. [CKM+16]
present a compelling argument in favor of the ‘unreason-
able’ fairness of maximum NSW by showing that such
an allocation has outstanding properties, namely, it is
EF1 (a popular fairness property of envy-freeness up to
one item) as well as Pareto optimal (PO), a standard
notion of economic efficiency. Even though computing
a maximum NSW allocation is hard, its approximation
recovers most of the fairness and efficiency guarantees;
see e.g., [BKV18, CCG+18, GM19].

In this paper, we extend our understanding of the
NSW problem to far more general settings. Our main
contribution is two approximation algorithms, SMatch
and RepReMatch for asymmetric agents with additive
and submodular valuations respectively. Both algo-

2Observe that the partition problem reduces to the NSW
problem with two identical agents.

3Slight generalizations of additive valuations are studied:
budget-additive [GHM19], separable piecewise linear concave
(SPLC) [AMGV18], and their combination [CCG+18].

4For instance, the notion of a maximum bang-per-buck (MBB)
item is critically used in most of these approaches. There is no
such equivalent notion for the submodular case.

rithms are simple to understand and involve non-trivial
modifications of a greedy repeated matchings approach.
Allocations of high valued items are done separately
by un-matching certain items and re-matching them,
by processes that are different in both algorithms. We
show that these approaches achieve approximation fac-
tors of O(n) and O(n logn) for additive and submodular
case respectively, which is independent of the number of
items. For additive valuations, our algorithm outputs
an allocation that is also EF1.

1.1 Model We formally define the valuation func-
tions we consider in this paper, and their relations to
other popular functions. For convenience, we also use
vi(j) instead of vi({j}) to denote the valuation of agent
i for item j.

1. Additive: Given valuation vi(j) of each agent i
for every item j, the valuation for a set of items
is the sum of the individual valuations. That is,
∀S ⊆ G, vi(S) =

∑
j∈S vi(j).

2. Monotone Submodular: Let vi(S1 | S2) denote the
marginal utility of agent i for a set S1 of items over
set S2, where S1,S2 ⊆ G and S1∩S2 = ∅. Then, the
valuation function of every agent is a monotonically
non decreasing function vi : 2G → R+ that satisfies
the submodularity constraint that for all i ∈ A, h ∈
G,S1,S2 ⊆ G,

vi(h | S1 ∪ S2) ≤ vi(h | S1).

Other popular valuation functions are budget additive
(BA), separable piece-wise linear and concave (SPLC),
OXS, Gross substitutes (GS), XOS and Subadditive.
These function classes are related as follows.

Additive ( SPLC ( OXS ( GS ( Submodular ( XOS,

Additive ( BA ( Submodular ⊆ XOS ⊆ Subadditive.

1.2 Results Table 1.2 summarizes approximation
guarantees of the algorithms RepReMatch and SMatch
under popular valuation functions [NTRV07], formally
defined in Section 1.1. All current best known results
are also stated here for reference.

To complement these results, we also provide a
1.5819-factor hardness of approximation result for the
submodular NSW problem in Section 4. This hardness
even applies to the case when the number of agents is
constant. This shows that the general problem is strictly
harder than the settings studied so far, for which 1.45
factor approximation algorithms are known.
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Valuations Symmetric Agents Asymmetric Agents
Hardness Algorithm Hardness Algorithm

Additive 1.069 [GHM19] 1.45 [BKV18] 1.069 [GHM19] O(n) [S]
Budget-additive —"— 1.45 [CCG+18] —"— —"—

SPLC —"— —"— —"— O(n logn) [R]
OXS —"— O(n logn) [R] —"— —"—Gross substitutes

Submodular 1.5819 [Thm 4.1] —"— 1.5819 [Thm 4.1] —"—
XOS —"— O(m) [NR14] —"— O(m) [NR14]Subadditive

Table 1: Summary of results. Every entry has the best known approximation guarantee for the setting followed by
the reference, from this paper or otherwise, that establishes it. Here, [S] and [R] respectively refer to Algorithms
SMatch and RepReMatch.

For the special case of the submodular NSW prob-
lem where the number of agents is constant, we describe
another algorithm with a matching 1.5819 approxima-
tion factor in Section 5, hence resolving this case com-
pletely. Finally in the same section, we show that for
the symmetric additive NSW problem, the allocation of
items returned by SMatch also satisfies EF1.

1.3 Techniques The main idea used in Algorithms
SMatch and RepReMatch is shown in Lemma 3.1 in
Section 3, which we restate in informal terms here.
Lemma (Informal). For k = O(n) and for every agent
i, after removing a set Si of k items that minimizes i’s
valuation for the remaining items, repeatedly matching
the remaining items G\(∪iSi) to locally maximize the
NSW objective gives every agent an allocation of value
at least a 1/n fraction of her valuation for the remaining
set of items, i.e, vi(G\(∪iSi))/n.

When the valuation functions are additive, then
such a set of k items can be efficiently found. SMatch
then follows by combining these results.

It is known from [SF11] that finding a set of min-
imum valuation among sets of some minimum size for
monotone submodular valuation functions is inapprox-
imable within

√
m/ lnm factor, where m is the number

of items. Due to this, the above lemma by itself is in-
sufficient for the submodular NSW problem. We prove
Lemma 3.3 in Section 3, that implies this statement.
Lemma (Informal). When we compute matchings be-
tween agents and items to locally maximize the weighted
geometric mean of agent valuations from their matched
items, then the set of items allocated in the first logn+1
matchings if re-matched have a matching where every
agent gets an item of value at least equal to the highest
valued item from her NSW optimizing allocation.

RepReMatch combines the two results in a re-
peated matching, un-matching and then re-matching al-
gorithm, by applying Lemma 3.1 to the set of items that
remain unallocated after a phase of logn+1 matchings.

An observation used while designing both algo-
rithms is that maximizing the logarithm of the NSW
function instead of the NSW objective does not change
the optimal allocation(s). Doing so allows us to maxi-
mize the (weighted) sum of the logarithms of individual
agent valuations, instead of the (weighted) product of
valuations. Hence, the edge weights defined in the vari-
ous graphs for computing the matchings in both SMatch
and RepReMatch are logarithms of agent valuations for
some allocations.
Submodular NSW with constant number of
agents. This is a different approach that uses tech-
niques of maximizing submodular functions over ma-
troids developed in [CVZ10], and a reduction of fair
division problems to the problem of maximizing a sub-
modular function over matroids from [Von08]. At a
high level, we first maximize the continuous relaxations
of agent valuation functions, then round them using a
randomized algorithm to obtain an integral allocation
of items. The two key results used in designing the al-
gorithm are Theorems 5.2 and 5.3.
Hardness of approximation. The submodular
ALLOCATION problem is to maximize the sum of val-
uations of agents over integral allocations of items.
[KLMM08] describe a reduction of MAX-3-COLORING,
which is NP-Hard to approximate within a constant fac-
tor, to ALLOCATION. We prove that this reduction also
establishes the same hardness for the submodular NSW
problem.

1.4 Further Related Work An extensive work has
been done on special cases of the NSW problem. For
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the symmetric additive NSW problem, several constant-
factor approximation algorithms have been obtained.
The first such algorithm used an approach based on
a variant of Fisher markets [CG15], to achieve an ap-
proximation factor of 2.889. Later, the analysis of this
algorithm was improved to 2 [CDG+17]. Another ap-
proach based on the theory of real stable polynomi-
als gave an e-factor guarantee [AGSS17]. Recently,
[BKV18] obtained the current best approximation fac-
tor of 1.45 using an approach based on limited envy.
These approaches have also been extended to provide
constant-factor approximation algorithms for slight gen-
eralizations of additive valuations, namely the budget-
additive [GHM19], SPLC [AMGV18], and a common
generalization of these two valuations [CCG+18].

All these approaches exploit the symmetry of agents
and the characteristics of additive-like valuation func-
tions. For instance, the notion of a maximum bang-per-
buck (MBB) item is critically used in most approaches.
There is no such equivalent notion for the submodular
case. This makes them hard to extend to the asymmet-
ric case and to more general valuation functions.

Fair and efficient division of items to asymmetric
agents with submodular valuations is an important
problem, also raised in [CDG+17]. However, the only
known result for this general problem is an Ω(m)-factor
algorithm [NR14], where m is the number of items.

Two other popular welfare objectives are the social
welfare where items are allocated to maximize the sum
of valuations of all agents and the max-min objective
where items are allocated to maximize the minimum
valuation. The latter objective is also termed as the
Santa Claus problem [BS06].

The social welfare problem under submodular val-
uations has been completely resolved with a e

e−1 =
1.5819-factor algorithm [Von08] and a matching hard-
ness result [KLMM08]. Note that the additive case for
this problem has a trivial linear time algorithm, hence it
is perhaps unsurprising that a constant factor algorithm
would exist for the submodular case.

For the Santa Claus problem, extensive work has
been done on the restricted additive valuations case
where the value of an item j is either vj or 0 for every
agent, resulting in constant factor algorithms for the
same [AKS15, DRZ18]. However, for the unrestricted
additive valuations the best approximation factor is
O(
√
n log3 n) [AS10]. For the submodular Santa Claus

problem, we have an O(n) factor algorithm [KP07]. On
the other hand, a hardness factor of 2 is the best known
lower bound for both settings [BD05].
Organization of the paper: In Section 2, we describe

the algorithm SMatch and analysis for the additive NSW
problem. In Section 3, the corresponding discussion
about the submodular NSW problem is presented. Next,
Section 4 contains the hardness proof for the submodu-
lar setting. Finally, Section 5 presents the results for the
special cases of submodular NSW with constant number
of agents and symmetric additive NSW.

2 Additive Valuations

In this section, we present SMatch, described in Algo-
rithm 1, for the asymmetric additive NSW problem, and
prove the following approximation result.

Theorem 2.1. Given an instance of the asymmetric
additive NSW problem, algorithm SMatch returns an
allocation x with NSW value at least 1/2n times the
optimal objective value. That is, NSW(x) ≥ 1

2n OPT.

SMatch is a single pass algorithm that allocates up
to one item to every agent per iteration such that the
NSW objective is locally maximized. An issue with a
naive single pass, locally optimizing greedy approach
is that the initial iterations work on highly limited
information. As shown in Example 2.1, such algorithms
can result in outcomes with very low NSW even for
symmetric agents with additive valuation functions.

Example 2.1. Consider 2 agents A,B with weights 1
each, and m+ 1 items. The valuations of A and B for
the first item are M + ε and M respectively. Agent A
also values each of the remaining items at 1, while B
only values the last of these at 1, and has 0 valuation
for the remaining (m − 1) items. An allocation that
optimizes the NSW of the agents will allocate the first
item to B, and allocate all the remaining items to A.
The optimal NSW objective is (Mm)1/2. A repeated
matching algorithm, in the first iteration, will allocate
the first item to A, and the last to B. No matching can
now give non zero valuation to B. The maximum NSW
objective that can be generated is ((M+ε+m−1)1)1/2 <√
M +m. Thus, using appropriate value ofM , the ratio

of OPT to NSW will depend on m.

In this example, although agent A can be allocated
an item of high valuation later, the algorithm does not
know this initially. Algorithm 1 resolves this issue by
pre-computing an approximate value that the agents
will receive in later iterations, and uses this information
in the edge weight definitions when allocating the first
items. We now discuss the details of SMatch.

2.1 Algorithm SMatch works in a single pass. For
every agent, the algorithm first computes the value
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of m − 2n least valued items and stores this in ui.
SMatch then defines a weighted complete bipartite
graph Γ(A,G,W) similarly as in the submodular case,
but here the edge weights are defined as w(i, j) =
ηi log

(
vi(j) + ui

n

)
, and allocates one item to each agent

along the edges of a maximum weight matching of Γ.
It then starts allocating items via repeated matchings.
Until all items are allocated, SMatch iteratively defines
graphs Γ(A,Grem,W) with Grem denoting the set of
unallocated items and edge weights defined as w(i, j) =
ηi log (vi + vi(j)), where vi is the valuation of agent i for
items that are allocated to her. SMatch then allocates
at most one item to each agent according to a maximum
weight matching of Γ.

2.2 Notation In the following discussion, we use
xi = {h1

i , . . . , h
τi
i } to denote the set of items received

by agent i in SMatch. We use x∗i = {g1
i , . . . , g

τ∗i
i }, τi

and τ∗i to denote the set of items in i’s optimal bundle,
and the number of items in xi and x∗i respectively. Then
for every i, all items in xi and G are ranked according to
the decreasing utilities as per vi. Gi,[a:b] denote the items
ranked from a to b according to agent i in G, and xi,1:t is
the total allocation to agent i from the first t matching
iterations. We also use Gi,k to denote the kth ranked
item of agent i from the entire set of items. For all i, we
define ui as the minimum value for the remaining set
of items upon removing at most 2n items from G, i.e.,
ui = minS⊆G,|S|≤2n vi(G \ S) = Gi,[2n+1,m].5

2.3 Analysis To establish the guarantee of Theorem
2.1, we first prove a couple of lemmas.

Lemma 2.1. vi(hti) ≥ vi(Gi,tn).

Proof. Since every iteration of SMatch allocates at most
n items, at the start of iteration t at most (t−1)n items
are allocated. Thus at least n items from G ranked
between 1 to tn by agent i are still unallocated. In the
tth iteration the agent will thus get an item with value
at least the value of Gi,tn and the lemma follows.

Lemma 2.2. vi(h2
i , . . . , h

τi
i ) ≥ ui

n .

Proof. Using Lemma 2.1 and since vi(Gi,tn) ≥
vi(Gi,tn+k), ∀k ∈ [n− 1]

vi(hti) ≥
1
n
vi(Gi,[tn:(t+1)n−1]) .

5As the valuation functions are monotone, the minimum value
will be obtained by removing exactly 2n items. The less than
accounts for the case when the number of items in G is fewer than
2n.

Thus,

vi(h2
i , . . . , h

τi
i ) =

τi∑
t=2

vi(hti) ≥
1
n

τi∑
t=2

(vi(Gi,[tn:(t+1)n−1])

As at most n items are allocated in every iteration, agent
i receives items for at least bmn c iterations.6 This implies
that (τi + 1)n ≥ m and hence,

vi(h2
i , . . . , h

τi
i ) ≥ 1

n

(
vi(Gi,[2n:m−1])

)
≥ 1
n

(
vi(Gi,[2n+1:m])

)
= 1
n
ui.

The second inequality follows as vi(Gi,2n) ≥ vi(Gi,m).

We now prove our main theorem.

Proof of Theorem 2.1.

NSW(x) =
n∏
i=1

(
vi
(
h1
i , . . . , h

τi
i

)ηi) 1∑n

i=1
ηi

=
n∏
i=1

((
vi(h1

i ) + vi(h2
i . . . , h

τi
i )
)ηi) 1∑n

i=1
ηi

≥
n∏
i=1

((
vi(h1

i ) + ui
n

)ηi) 1∑n

i=1
ηi ,

where the last inequality follows from Lemma 2.2.
During the allocation of the first item h1

i , items g1
i of

all agents are available. Thus, allocating each agent her
own g1

i is a feasible first matching and we get

NSW(x) ≥
n∏
i=1

((
vi(g1

i ) + ui
n

)ηi) 1∑n

i=1
ηi .

Now, ui = minS∈G,|S|≤2n vi(G \ S). Suppose we define,
S∗i = arg min|S|≤2n,S⊆x∗

i
vi(x∗i \ S), then vi(x∗i \ S∗i ) ≤

ui. To see this, let Si = arg minS∈G,|S|≤2n vi(G \ S).
Now, ui = vi(G \ Si) ≥ vi(x∗i \ Si) ≥ vi(x∗i \ S∗i ). Thus,

NSW(x) ≥
n∏
i=1

((
1

2nvi(S
∗
i ) + 1

n
vi(x∗i \ S∗i )

)ηi) 1∑n

i=1
ηi

≥ 1
2n

n∏
i=1

(vi(x∗i )ηi)
1∑n

i=1
ηi

= 1
2nOPT.

6Here we assume that the agents have non-zero valuation for
every item. If it does not, the other case is also straightforward
and the lemma continues to hold.
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Algorithm 1: SMatch for the Asymmetric Additive NSW problem
Input : A set A of n agents with weights ηi, ∀i ∈ A, a set G of m indivisible items, and additive

valuations vi : 2G → R+, where vi(S) is the valuation of agent i ∈ A for a set of items S ⊆ G.
Output: An allocation that approximately optimizes the NSW.

1 xi ← ∅, ui ← vi(Gi,[2n+1:m]) ∀i ∈ [n] // Gi,[a:b] defined in Section 2.2
2 Define weighted complete bipartite graph Γ(A,G,W) with weights
W = {w(i, j) | w(i, j) = ηi log

(
vi(j) + ui

n

)
,∀i ∈ A, j ∈ G}

3 Compute a maximum weight matchingM for Γ
4 xi ← xi ∪ {j | (i, j) ∈M}, ∀i ∈ A // allocate items according to M
5 Grem ← G\{j | (i, j) ∈M} // update set of unallocated items

6 while Grem 6= ∅ do
7 Define weighted complete bipartite graph Γ(A,Grem,W) with weights

W = {w(i, j) | w(i, j) = ηi log(vi(j) + vi(xi)), i ∈ A, j ∈ Grem}
8 Compute a maximum weight matchingM for Γ
9 xi ← xi ∪ {j | (i, j) ∈M}, ∀i ∈ A // allocate items according to M

10 Grem ← Grem\{j | (i, j) ∈M} // remove allocated items
11 end
12 Return x

Remark 2.1. When SMatch is applied to the instance
of Example 2.1, it results in a better allocation than
that of a naive repeated matching approach. Stage 1
of SMatch computes ui as m − 2n and 0 for A and
B respectively. When this value is included in the
edge weight of the first bipartite graph Γ, the resulting
matching gives B the first item, and A some other item.
Subsequently A gets all remaining items, resulting in an
allocation having optimal NSW.

3 Submodular Valuations

In this section we present the algorithm RepReMatch,
given in Algorithm 2, for approximating the NSW
objective under submodular valuations. We will prove
the following relation between the NSW of the allocation
x returned by RepReMatch and the optimal weighted
geometric mean OPT.

Theorem 3.1. Given an instance of the asymmet-
ric submodular NSW problem, algorithm RepReMatch
returns an allocation x with NSW value at least
1/(2n(logn+ 2)) times the optimal objective value, i.e.,

NSW(x) ≥ 1
2n(log n + 2)OPT.

3.1 Algorithm RepReMatch takes as input an in-
stance of the NSW problem, denoted by (A,G,V), where
A is the set of agents, G is the set of items, and
V = {v1, v2 . . . , vn} is the set of agents’ monotone sub-
modular valuation functions, and generates an alloca-

tion vector x. Each agent i ∈ A is associated with a
positive weight ηi.

RepReMatch runs in three phases. In the first
phase, in every iteration, we define a weighted complete
bipartite graph Γ(A,Grem,W) as follows. Grem is the
set of items that are still unallocated (Grem = G
initially). The weight of edge (i, j), i ∈ A, j ∈ Grem,
denoted by w(i, j) ∈ W, is defined as the logarithm
of the valuation of the agent for the singleton set
having this item, scaled by the agent’s weight. That is,
w(i, j) = ηi log(vi(j)). We then compute a maximum
weight matching in this graph, and allocate to agents
the items they were matched to (if any). This process
is repeated for logn + 1 iterations. We perform a
similar repeated matching process in the second phase,
with different edge weight definitions for the graphs Γ.
We start this phase by assigning empty bundles to all
agents. Here, the weight of an edge between agent i
and item j is defined as the logarithm of the valuation
of agent i for the set of items currently allocated to
her in Phase 2 of RepReMatch, scaled by her weight.
That is, if we denote the items allocated in t iterations
of Phase 2 as x2

i,t, in (t + 1)st iteration, w(i, j) =
ηi log(vi(x2

i,t ∪ {j})).
In the final phase, we re-match the items allocated

in Phase 1. We release these items from their agents,
and define Grem as union of these items. We define Γ
by letting the edge weights reflect the total valuation
of the agent upon receiving the corresponding item, i.e.
w(i, j) = ηi log(vi(x2

i ∪ {j})), where x2
i is the final set

of items allocated to i in Phase 2. We compute one
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maximum weight matching for Γ so defined, and allocate
all items along the matched edges. All remaining items
are then arbitrarily allocated. The final allocations to
all agents, denoted as x = {xi}i∈A, is the output of
RepReMatch.

3.2 Notation There are three phases in
RepReMatch. We denote the set of items received
by agent i in Phase p ∈ {1, 2, 3} by xpi , and its size |xpi |
by τpi . Similarly, xi and τi respectively denote the final
set of items received by agent i and the size of this set.
Note that Phase 3 releases and re-allocates selected
items of Phase 1, thus τi is not equal to τ1

i + τ2
i + τ3

i .
The items allocated to the agents in Phase 2 are
denoted by x2

i = {h1
i , h

2
i . . . , h

τ2
i
i }. We also refer to the

complete set of items received in iterations 1 to t of
Phase p by xpi,t, for any p ∈ {1, 2, 3}.

For the analysis, the marginal utility of an agent
i for an item j over a set of items S is denoted by
vi(j | S) = vi({j} ∪ S) − vi(S). Similarly, we denote
by vi(S1 | S2) the marginal utility of set S1 of items
over set S2 where S1,S2 ⊆ G and S1 ∩ S2 = ∅. We use
x∗ = {x∗i | i ∈ A} to denote the optimal allocation
of all items that maximizes the NSW, and τ∗i for |x∗i |.
For every agent i, items in x∗i are ranked so that gji is
the item that gives i the highest marginal utility over
all higher ranked items. That is, for j = 1, g1

i is the
item that gives i the highest marginal utility over ∅, and
for all 2 ≤ j ≤ τ∗i , g

j
i = argmaxg∈x∗

i
\{g1

i
,...,gj−1

i
} vi(g |

{g1
i , . . . , g

j−1
i }).7

We let x̄∗i be the set of items from x∗i that are
not allocated (to any agent) at the end of Phase 1,
and denote by v̄∗i = vi(x̄∗i ) and τ̄∗i = |x̄∗i | respec-
tively the total valuation and number of these items.
For readability, to specify the valuation for a set of
items S1 = {s1

1, . . . s
k1
1 }, instead of vi({s1

1, . . . , s
k1
1 }),

we also use vi(s1
1, . . . , s

k1
1 ). Similarly, while defining the

marginal utility of a set S2 = {s1
2, . . . , s

k2
2 } over S1 in-

stead of writing vi({s1
2, . . . , s

k2
2 } | {s1

1, . . . , s
k1
1 }), we also

use vi(s1
2, . . . , s

k2
2 | s1

1, . . . , s
k1
1 ).

3.3 Analysis We will prove Theorem 3.1 using a
series of supporting lemmas. We first prove that in
Phase 2, the minimum marginal utility of an item
allocated to an agent over her current allocation from

7Since the valuations are monotone submodular, this ensures
that vi(gj

i | {g
1
i , . . . , g

j−1
i }) ≥ vi(gk

i | {g
1
i , . . . , g

k−1
i }) for all

k ≥ j. This implies that in any subset of ` items in the optimal
bundle, the highest ranked item’s marginal contribution is at least
1/` times that of this set, when the marginal contribution is
counted in this way.

previous iterations of Phase 2 is not too small. This is
the main result that allows us to bound the minimum
valuation of the set of items allocated in Phase 2.

In the tth iteration of Phase 2, RepReMatch finds a
maximum weight matching. Here the algorithm tries to
assign to each agent an item that gives her the maximum
marginal utility over her currently allocated set of items.
However, every agent is competing with n − 1 other
agents to get this item. So, instead of receiving the best
item, she might lose a few high ranked items to other
agents. Consider the intersection of the set of items
that agent i loses to other agents in the tth iteration
with the set of items left from her optimal bundle at
the beginning of tth iteration. We will refer to this set
of items by Sti . Let the number of items in Sti be kti .

For the analysis of RepReMatch, we also introduce
the notion of attainable items for every iteration. Sti
is the set of an agent’s preferred items that she lost to
other agents. The items that are now left are referred
as the set of attainable items of the agent. Note that
in any matching, every agent gets an item equivalent to
her best attainable item, that is, an item for which her
marginal valuation (over her current allocation) is at
least equal to that from her highest marginally valued
attainable item.

For all i, we denote the intersection of the set of
attainable items in the tth iteration and agent i’s optimal
bundle x∗i by x̄∗i,t, and let u∗i = vi(x̄∗i,1) = vi(x̄∗i \S1

i ) be
the total valuation of attainable items at first iteration
of Phase 2. In the following lemma, we prove a lower
bound on the marginal valuation of the set of attainable
items over the set of items that the algorithm has
already allocated to the agent.

Lemma 3.1. For any j ∈ [τ2
i − 1],

vi(x̄∗i,j+1|h1
i , . . . , h

j
i ) ≥ u∗i − k2

i vi(h1
i )−

j∑
t=2

kt+1
i vi(hti | h1

i , . . . , h
t−1
i )− vi(h1

i , h
2
i . . . , h

j
i ).

Proof. We prove this lemma using induction on the
number of iterations t. Consider the base case when
t = 2. Agent i has already been allocated h1

i . She now
has at most τ̄∗i − k1

i items left from x̄∗i that are not yet
allocated. In the next iteration the agent loses k2

i items
to other agents and receives h2

i . Each of the remaining
τ̄∗i −k1

i items have marginal utility at most vi(h1
i ) over ∅.

Thus, the marginal utility of these items over h1
i is also

at most vi(h1
i ). We bound the total marginal valuation

of x̄∗i,2 over {h1
i }, by considering two cases.

Case 1: h1
i /∈ x̄∗i,1: By monotonicity of vi, vi(x̄∗i,2 |

h1
i ) ≥ vi(x̄∗i,2)− vi(h1

i ) = vi(x̄∗i,1 \ S2
i )− vi(h1

i ).
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Algorithm 2: RepReMatch for the Asymmetric Submodular NSW problem
Input : Set A of n agents with weights ηi, ∀i ∈ A, set G of m indivisible items, and valuations

vi : 2G → R+, where vi(S) is the valuation of agent i ∈ A for a set of items S ⊆ G.
Output: An allocation that approximately optimizes the NSW objective

Phase 1:

1 x1
i ← ∅, ∀i ∈ A // x1

i ’s store the set of items allocated in Phase 1
2 Grem ← G // set of unallocated items before every iteration
3 t← 0 // iteration counter
4 while Grem 6= ∅ and t ≤ logn+ 1 do
5 Define weighted complete bipartite graph Γ(A,Grem,W) with weights

W = {w(i, j) | w(i, j) = ηi log(vi(j)),∀i ∈ A, j ∈ Grem}
6 Compute a maximum weight matchingM for Γ
7 x1

i ← x1
i ∪ {j}, ∀(i, j) ∈M // allocate items to agents according to M

8 Grem ← Grem\{j | (i, j) ∈M}; t← t+ 1 // remove allocated items
9 end
Phase 2:

10 For all i, x2
i ← ∅ // x2

i ’s are the sets of items allocated in Phase 2
11 while Grem 6= ∅ do
12 Define weighted complete bipartite graph Γ(A,Grem,W) with weights

W = {w(i, j) | w(i, j) = ηi log(vi(x2
i,t ∪ {j})),∀i ∈ A, j ∈ Grem}

13 Compute a maximum weight matchingM for Γ
14 x2

i ← x2
i ∪ {j}, ∀(i, j) ∈M // allocate items to agents according to M

15 Grem ← Grem\{j | (i, j) ∈M} // remove allocated items
16 end

Phase 3:

17 Grem ←
⋃
i x1

i // release items allocated in Phase 1
18 Define weighted complete bipartite graph Γ(A,Grem,W) with

W = {w(i, j) | w(i, j) = ηi log(vi(x2
i ∪ {j})),∀i ∈ A, j ∈ Grem}

19 Compute a maximum weight matchingM for Γ
20 x2

i ← x2
i ∪ {j}, ∀(i, j) ∈M // allocate items to agents according to M

21 Arbitrarily allocate rest of the items to agents, let x = {xi}i∈A denote the final allocation
22 return x

Case 2: h1
i ∈ x̄∗i,1: Here, vi(x̄∗i,2 | h1

i ) = vi(x̄∗i,2∪{h1
i })−

vi(h1
i ) = vi(x̄∗i,1 \ S2

i )− vi(h1
i ).

In both cases, submodularity of valuations and the fact
that for all j ∈ S2

i , vi(j) ≤ vi(h1
i ) implies,

vi(x̄∗i,2 | h1
i ) ≥ vi(x̄∗i,1)− vi(S2

i )− vi(h1
i )

≥ u∗i − k2
i vi(h1

i )− vi(h1
i ),

proving the base case. Now assume the lemma is true
for all t ≤ r iterations, for some r, i.e.,

vi(x̄∗i,r | h1
i , . . . , h

r−1
i ) ≥u∗i − k2

i vi(h1
i )

−
r−1∑
t=2

kt+1
i vi(hti | h1

i , . . . , h
t−1
i )

− vi(h1
i , h

2
i . . . , h

r−1
i ).

Consider the (r+ 1)st iteration. Again, we analyze two
cases.

Case 1: hri /∈ x̄∗i,r:

vi(x̄∗i,r+1 | h1
i , . . . , h

r
i )

= vi(x̄∗i,r \ Sr+1
i | h1

i , . . . , h
r
i )

≥ vi(x̄∗i,r | h1
i , . . . , h

r
i )− vi(Sr+1

i | h1
i , . . . , h

r
i )

(By submodularity of vi)
≥ vi(x̄∗i,r | h1

i , . . . , h
r
i )− vi(Sr+1

i | h1
i , . . . , h

r−1
i )

≥ vi(x̄∗i,r | h1
i , . . . , h

r−1
i )− vi(hri | h1

i , . . . , h
r−1
i )

− vi(Sr+1
i | h1

i , . . . , h
r−1
i ).

(By monotonicity of vi)

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



The submodularity of vi gives the first two inequalities,
and monotonicity of vi implies the last.

Case 2: hri ∈ x̄∗i,r:
vi(x̄∗i,r+1 | h1

i , . . . , h
r
i )

= vi(x̄∗i,r+1 ∪ {hri } | h1
i , . . . , h

r−1
i )−

vi(hri | h1
i , . . . , h

r−1
i )

= vi(x̄∗i,r \ Sr+1
i | h1

i , . . . , h
r−1
i )− vi(hri | h1

i , . . . , h
r−1
i )

≥ vi(x̄∗i,r | h1
i , . . . , h

r−1
i )−

vi(hri | h1
i , . . . , h

r−1
i )− vi(Sr+1

i | h1
i , . . . , h

r−1
i ).

Here the second expression follows as x̄∗i,r = x̄∗i,r+1 ∪
{hri } ∪ S

r+1
i , and the last follows from the definition of

submodularity of the valuations.

In both cases, from the induction hypothesis we get,

vi(x̄∗i,r+1 | h1
i , . . . , h

r
i ) ≥ u∗i − k2

i vi(h1
i )−

r−1∑
t=2

kt+1
i vi(hti | h1

i , . . . , h
t−1
i )− vi(h1

i , h
2
i . . . , h

r−1
i )−

vi(hri | h1
i , . . . , h

r−1
i )− vi(Sr+1

i | h1
i , . . . , h

r−1
i ).

Finally, since RepReMatch assigns the item with highest
marginal utility from the set of attainable items, and
each item in Sr+1

i is attainable at rth iteration,

vi(x̄∗i,r+1 | h1
i , . . . , h

r
i )

≥u∗i − k2
i vi(h1

i )−
r−1∑
t=2

kt+1
i vi(hti | h1

i , . . . , h
t−1
i )

− vi(h1
i , h

2
i . . . , h

r−1
i )− vi(hri | h1

i , . . . , h
r−1
i )

− kr+1
i vi(hri | h1

i , . . . , h
r−1
i )

=u∗i − k2
i vi(h1

i )−
r∑
t=2

kt+1
i vi(hti | h1

i , . . . , h
t−1
i )

− vi(h1
i , h

2
i . . . , h

r
i ).

The above lemma directly allows us to give a lower
bound on the marginal valuation of item received by
the agent in (j + 1)th iteration over the items received
in previous iterations. We state and prove this in the
following corollary.
Corollary 3.1. For any j ∈ [τ2

i − 1],

vi(hj+1
i | h1

i , . . . , h
j
i )

≥ 1
τ̄∗i −

∑j+1
t=1 k

t
i

(
u∗i − k2

i vi(h1
i )

−
j∑
t=2

kt+1
i vi(hti | h1

i , . . . , h
t−1
i )

−vi(h1
i , h

2
i . . . , h

j
i )
)
.

Proof. In any setting with a set of items S = {s1, . . . sk},
and a monotone submodular valuation v on this set,
if v(S) = u, then there exists an item s ∈ S such
that v(s) ≥ u/k. Thus, with S = x̄∗i,j+1, k = τ̄∗i −∑j+1
t=1 k

t
i , for the submodular valuation function vi(· |

{h1
i , . . . , h

j
i}), we can say that at iteration j + 1, hj+1

i

will have a marginal valuation at least,

1
τ̄∗i −

∑j+1
t=1 k

t
i

vi(x̄∗i,j+1|h1
i , . . . , h

j
i ).

Together with Lemma 3.1, this proves the corollary.
Note that at any iteration t, if the received item hti is
from x̄∗i,t, then the denominator reduces further by 1,
and the bound still holds.

In the following lemma, we give a lower bound on
the total valuation of the items received by the agent in
Phase 2.

Lemma 3.2. vi(h1
i , . . . , h

τ2
i
i ) ≥ u∗i

n .

Proof. Recall that u∗i is the valuation of the items from
x̄∗i after she loses items in S1

i to other agents in the
first iteration of Phase 2 and τ̄∗i is the number of items
in x̄∗i . From Corollary 3.1, total valuation of the items
obtained by agent i in Phase 2 is bounded as follows.

vi(h1
i , . . . h

τ2
i
i ) = vi(h1

i , . . . , h
τ2
i −1
i )+

vi(hτ
2
i
i | h

1
i , . . . , h

τ2
i −1
i )

⇒ vi(h1
i , . . . h

τ2
i
i ) ≥ vi(h1

i , . . . , h
τ2
i −1
i )

+ 1
τ̄i
∗ −

∑τ2
i
−1

t=0 kt+1
i

(
u∗i − k2

i vi(h1
i )

−
τ2
i −1∑
t=2

kt+1
i vi(hti | h1

i , . . . h
t−1
i )

− vi(h1
i , h

2
i . . . , h

τ2
i −1
i )

)
.

By definition, τ2
i is the last iteration of Phase 2 in

which agent i gets matched to some item. After this
iteration, at most n items from her optimal bundle
remain unallocated, else she would have received one
more item in the (τ2

i + 1)st iteration. This means the
optimal number of items τ̄∗i −

∑τ2
i −1
t=0 kt+1

i ≤ n, hence the
denominator of the second term in the above equation is
at most n. Again, we note here that if at any iteration
t, the item assigned to agent i was from x̄∗i,t, then the
denominator will be further reduced by 1 for all such
iterations, and the inequality still remains true when kti
is replaced by kti + 1. Combined with the fact that an

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



agent can lose at most n−1 items in every iteration, we
get kti ≤ n− 1, implying,

vi(h1
i , . . . h

τ2
i
i ) ≥ vi(h1

i , . . . , h
τ2
i −1
i )

+ 1
n

(
u∗i − k2

i vi(h1
i )

−
τ2
i −1∑
t=2

kt+1
i vi(hti | h1

i , . . . h
t−1
i )

− vi(h1
i , h

2
i . . . , h

τ2
i −1
i )

)
≥ vi(h1

i , . . . , h
τ2
i −1
i )

+ 1
n

(u∗i − (n− 1)vi(h1
i )

−
τ2
i −1∑
t=2

(n− 1)vi(hti | h1
i , . . . h

t−1
i )

− vi(h1
i , h

2
i . . . , h

τ2
i −1
i ))

= vi(h1
i , . . . , h

τ2
i −1
i )

+ 1
n

(u∗i − (n− 1)vi(h1
i , h

2
i . . . , h

τ2
i −1
i )

− vi(h1
i , h

2
i . . . , h

τ2
i −1
i ))

= u∗i
n
.

Remark 3.1. In Lemma 3.1 and its subsequent
Corollary 3.1 and Lemma 3.2, if u∗i − k2

i vi(h1
i ) −∑j

t=2 k
t+1
i vi(hti | h1

i , . . . , h
t−1
i ) − vi(h1

i , . . . , h
j
i ) becomes

negative for any j ∈ [τ2
i − 1], then we have

u∗i ≤ k2
i vi(h1

i ) +
j∑
t=2

kt+1
i vi(hti | h1

i , . . . , h
t−1
i )

+ vi(h1
i , . . . , h

j
i )

≤ (n− 1)vi(h1
i ) +

j∑
t=2

(n− 1)vi(hti | h1
i , . . . , h

t−1
i )

+ vi(h1
i , . . . , h

j
i )

= n · vi(h1, . . . , h
j
i )

≤ n · vi(h1, . . . , h
τ2
i −1
i ),

which implies that Lemma 3.2 holds.

We now bound the minimum valuation that can be
obtained by every agent in Phase 3. Recall that gi1 is
the item that gives the highest marginal utility over the
empty set to agent i. Before proceeding, we define

G1
i := {g ∈ G | vi(g | ∅) ≥ vi(g1

i | ∅)}.

Lemma 3.3. Consider the complete bipartite graph
where the set of agents A, and the set of items allocated
in the first Phase of RepReMatch are the parts, and
edge weights are the weighted logarithm of the agent’s
valuation for the bundle of items containing the item
adjacent to the edge and items allocated in Phase 2.
That is, consider Γ(A,G =

⋃
i x1

i ,W = {w(i, j) =
ηi log(vi({j} ∪ x2

i ))}). In this graph, there exists a
matching where each agent i gets matched to an item
from their highest valued set of items G1

i .

Proof. Among all feasible matchings between the set of
agents and the set of items released after t iterations
of Phase 1, consider the set of matchings M where all
the agents whose entire G1

i is in this set of items are
matched to some item from their G1

i s. Arbitrarily pick
a matching from a subset of this set of matchings where
maximum number of agents are matched to some item
from their G1

i . Denote this matching byMt. Note that
as for every set of agents S we have |

⋃
i∈S G1

i | ≥ |S|,
in Mt, the set of agents not matched to an item from
their G1

i each have at least one item from this set still
unallocated after t iterations.

LetAt denote the set of agents that are not matched
to any item from their G1

i inMt. We prove by induction
on t that |At| ≤ n/2t.

For the base case of the induction, when t = 1, we
count the number of agents who did not receive any item
from their own G1

i in the maximum weight matching of
the algorithm. We know that before the first iteration,
every item is unallocated. An agent will not receive
any item from G1

i only if all items from this set are
allocated to other agents in the matching. Hence, if α
agents did not receive any item from their G1

i , all items
from at least α number of G1

i sets got matched to some
agent(s) in the first matching. If α < n/2, then more
than n/2 agents themselves received some item from
their G1

i . If α ≥ n/2, then at least α items, each from
a different G1

i were allocated. In either case, releasing
the allocation of the first matching releases at least n/2
items, each belonging in a distinct agent’s G1

i . Hence, in
M1 at least n/2 agents receive an item from their G1

i ,
and |A1| ≤ n/2.

For the inductive step, we assume the claim is true
for the first t iterations. That is, for every k ≤ t, in
Mk, at most n/2k agents do not receive an item from
their G1

i ’s.
Before the (t + 1)st iteration begins, we know that

for every agent in At, at least one item from their
G1
i is still unallocated. Again by the reasoning of the

base case, at least half of the agents in At will have
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some item from their G1
i allocated in the (t + 1)st

matching (possibly to some other agent). Hence, in
M(t+1), |A(t+1)| ≤ |At|/2. By the inductive hypothesis,
|A(t+1)| ≤ n/2(t+1).

Proof of Theorem 3.1. From Lemma 3.2,

vi(h1
i , . . . , h

τ2
i
i ) ≥ u∗i

n
.

By Lemma 3.3, giving each agent her own g1
i or

some item, denoted by say h1∗
i , that gives her a marginal

utility over ∅ at least as much as vi(g1
i ) is a feasible

matching before Phase 3 begins. Therefore, we get,
(3.1)

NSW(x) ≥
(

n∏
i=1

(vi(h1∗
i , h

2
i , . . . , h

τ2
i
i ))ηi

)1/(
∑n

i=1
ηi)

.

Since the valuation functions are monotonic,

vi(h1∗
i , h

2
i , . . . , h

τ2
i
i ) ≥ vi(h1∗

i ) ≥ vi(g1
i ).

Phase 1 of the algorithm runs for logn + 1 iterations
and each iteration allocates n items. Thus |x∗i \ x̄∗i | ≤
n(logn + 1) and |S1

i | ≤ n implying, |(x∗i \ x̄∗i ) ∪ S1
i | ≤

n(logn+ 2). Thus,

vi(g1
i ) ≥ 1

n(logn+ 2)vi((x
∗
i \ x̄∗i ) ∪ S1

i ).

Also,

vi(h1∗
i , h

1
i , . . . , h

τ2
i
i ) ≥ vi(h1

i , . . . , h
τ2
i
i )

≥ u∗i
n

= 1
n
vi(x̄∗i \ S1

i ).

Thus,

vi(h1∗
i , h

1
i , . . . , h

τ2
i
i )

≥ 1
2

(
1

n(logn+ 2)vi((x
∗
i \ x̄∗i ) ∪ S1

i ) + 1
n
vi(x̄∗i \ S1

i )
)

≥ 1
2

1
n(logn+ 2)vi(((x

∗
i \ x̄∗i ) ∪ S1

i ) ∪ (x̄∗i \ S1
i ))

= 1
2

1
n(logn+ 2)vi(x

∗
i ).

The second inequality follows from the submodularity
of valuations. The last bound, together with (3.1) gives,

NSW(x) ≥
(

n∏
i=1

(
1
2

1
n(logn+ 2)vi(x

∗
i )
)ηi)1/

∑n

i=1
ηi

≥ 1
2

1
n(logn+ 2)OPT.

4 Hardness of Approximation

We complement our results for the submodular case
with a e

(e−1) -factor hardness of approximation. For-
mally, we prove the following theorem.

Theorem 4.1. Unless P = NP, there is no polynomial
time e

(e−1) -factor approximation algorithm for the sub-
modular NSW problem, even when agents are symmetric
and have identical valuations.

Proof. We show this using the hardness of approxi-
mation result of the ALLOCATION problem proved in
[KLMM08]. We first summarize the relevant parts of
[KLMM08]. The ALLOCATION problem is to find an
allocation of a set of indivisible items among a set
of agents with monotone submodular utilities for the
items, such that the sum of the utilities of all agents
is maximized. Note that if the valuation functions
were additive, the problem is trivial, and an optimal
allocation gives every item to the agent who values it
the most. To obtain a hardness of approximation re-
sult for the submodular case, the MAX-3-COLORING
problem is reduced to the ALLOCATION problem.
MAX-3-COLORING, the problem of determining what
fraction of edges of a graph can be properly col-
ored when 3 colors are used to colors all vertices
of the graph, is known to be NP-Hard to approx-
imate within some constant factor c. The reduc-
tion from MAX-3-COLORING generates an instance of
ALLOCATION with symmetric agents having identical
submodular valuation functions for the items. The re-
duction is such that for instances of MAX-3-COLORING
with optimal value 1, the corresponding ALLOCATION
instance has an optimal value of nV , where n is the
number of agents in the instance, and V is a function
of the input parameters of MAX-3-COLORING. In this
case, every agent receives a set of items of utility V .
For instances of MAX-3-COLORING with optimal value
at most c, it is shown that the optimal sum of utilities
of the resulting ALLOCATION instance cannot be higher
than (1− 1/e)nV .

For proving hardness of the submodular NSW prob-
lem, we note that the input of the ALLOCATION and
NSW problems are the same. So let us consider the in-
stance generated by the reduction as that of an NSW
maximizing problem. From the results of [KLMM08],
we can prove the following claims.

• If the optimal value of MAX-3-COLORING is 1, then
the NSW of the reduced instance is V . As every
agent receives a set of items of value V , the NSW
is also V .
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• If the optimal value of MAX-3-COLORING is at
most c, then the NSW is at most (1 − 1/e)V .
Applying the AM-GM inequality establishes that
the NSW is at most 1/n times the sum of utilities,
which is proven to be at most (1− 1/e)nV .

As MAX-3-COLORING cannot be approximated within
a factor c, thus NSW of a problem with submodular
utilities cannot be approximated within a factor e

(e−1) .
As the ALLOCATION problem now considered as

an NSW problem had symmetric agents and identical
submodular valuation functions, the NSW problem also
satisfies these properties.

5 Special Cases

5.1 Submodular NSW with Constant Number of
Agents In this section, we describe a constant factor
algorithm for a special case of the submodular NSW
problem. Specifically, we prove the following theorem.

Theorem 5.1. For any constant ε > 0 and a constant
number of agents n ≥ 2, there is a (1 − 1/e − ε)-
factor approximation algorithm for the NSW problem
with monotone submodular valuations, in the value
oracle model. Additionally, this is the best possible
factor independent of n, and any factor better than
(1 − (1 − 1/n)n + ε) would require exponentially many
queries, unless P = NP.

The key results that establish this result are from
the theory of submodular function maximization de-
veloped in [CVZ10]. The broad approach for approx-
imately maximizing a discrete monotone submodular
function is to optimize a popular continuous relaxation
of the same, called the multilinear extension, and round
the solution using a randomized rounding scheme. We
will use an algorithm that approximately maximizes
multiple discrete submodular functions, described in
[CVZ10], as the main subroutine of our algorithm for
the submodular NSW problem, hence first we give an
overview of it, starting with a definition of the multilin-
ear extension.

Definition 5.1 (Multilinear Extension of a submodular
function). : Given a discrete submodular function f :
2m → R+, its multilinear extension F : [0, 1]m → R+,
at a point y ∈ [0, 1]m, is defined as the expected value of
f(z) at a point z ∈ {0, 1}m obtained by rounding y such
that each coordinate yi is rounded to 1 with probability
yi, and to 0 otherwise. That is,

F (y) = E[f(z)] =
∑
X⊆[m]

f(X)
∏
i∈X

yi
∏
i/∈X

(1− yi).

The following theorem proves that the multilinear
extensions of multiple discrete submodular functions
defined over a matroid polytope can be simultaneously
approximated to optimal values within constant factors.

Theorem 5.2. [CVZ10] Consider monotone submod-
ular functions f1, . . . , fn : 2N → R+, their multilin-
ear extensions Fi : [0, 1]N → R+ and a matroid poly-
tope P ⊆ [0, 1]N . There is a polynomial time algorithm
which, given V1, ..., Vn ∈ R+, either finds a point x ∈ P
such that Fi(x) ≥ (1−1/e)Vi for each i, or returns a cer-
tificate that there is no point x ∈ P such that Fi(x) ≥ Vi
for all i.

Given a discrete monotone submodular function f
defined over a matroid, a rounding scheme called the
swap rounding algorithm can be applied to round a
solution of its multilinear extension to a feasible point
in the domain of f , which is an independent set of
the matroid. At a high level, in the rounding scheme,
it is first shown that every solution of the multilinear
extension can be expressed as a convex combination of
independent sets such that for any two sets S0 and S1
in the convex combination, there is at least one element
in each set that is not present in the other, that is
∃e0 ∈ S0\S1 and ∃e1 ∈ S1\S0 . The rounding method
then iteratively merges two arbitrarily chosen sets S0
and S1 into one new set as follows. Until both sets
are not the same, one set Si is randomly chosen with
probability proportional to the coefficient of its original
version in the convex combination βi, that is Si is chosen
with probability βi/(β0 + β1), and altered by removing
ei from it and adding e1−i. The coefficient of the new
set obtained by this merge process is the sum of those
of the sets merged, i.e, β0 + β1.

The following lower tail bound proves that with
high probability, the loss in the function value by swap
rounding is not too much.

Theorem 5.3. [CVZ10] Let f : {0, 1}n → R+ be a
monotone submodular function with marginal values in
[0, 1], and F : [0, 1]n → R+ its multilinear extension.
Let (x1, ..., xn) ∈ P (M) be a point in a matroid polytope
and (X1, ..., Xn) ∈ {0, 1}n a random solution obtained
from it by randomized swap rounding. Let µ0 =
F (x1, ..., xn) and δ > 0. Then

Pr[f(X1, ..., Xn) ≤ (1− δ)µ0] ≤ e−µ0δ
2/8.

In short, for a matroid M(X, I), given monotone
submodular functions fi : {0, 1}m → R+, i ∈ [n] over
the matroid polytope, and values vi, i ∈ [n], there is
an efficient algorithm that determines if there is an
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independent set S ∈ I such that fi(S) ≥ (1 − 1/e)vi
for every i.

To use this algorithm to solve the submodular
NSW problem, we define a matroid M(X, I) as follows.
This construction was first described in [LLN06], and
also used for approximating the submodular welfare in
[Von08]. From the sets of agents A and items G, we
define the ground set X = A × G. The independent
sets are all feasible integral allocations I = {S ⊆ X |
∀j : |S ∩ {A × {j}}| ≤ 1}. The valuation functions of
every agent ui : {0, 1}m → R+ translate naturally to
submodular functions over this matroid fi : I → R+,
with fi(S) = ui(Gi), where Gi = {j ∈ G | (i, j) ∈ S}.
With this construction, for any set of values Vi, i ∈
[n], checking if there is an integral allocation of items
that gives valuations at least (approximately) Vi to
each agent i is equivalent to checking if there is an
independent set in this matroid that has value Vi for
every agent i.

The algorithm for approximating the NSW is now
straightforward, and given in Algorithm 3. Essentially,
we guess the optimal NSW value OPT , and the utility
of every agent in the optimal allocation Vi, and check
if there is an allocation X that gives every agent i a
bundle of value at least (approximately) Vi. As every
agent can receive at most Max utility, Max is a trivial
upper bound for the maximum value of NSW, hence we
perform a binary search for the optimal value in the
range (0,Max]. Searching for sets Vi by enumerating
only those sets with values that are powers of (1+δ) for
some constant δ > 0 will reduce the time complexity
of the algorithm to O(poly(log(Max)/δ)) instead of
O(poly(Max)), by changing the approximation factor
to (1− 1/e)(1− δ) ≤ (1− 1/e− ε) for some ε > 0.

The hardness claim in Theorem 5.1 follows from
the proof of Theorem 4.1. It was shown that in the
case where the optimal value of the MAX-3-COLORING
instance was 1, every agent in the reduced NSW instance
received a bundle of items of value V , else the total NSW
could not be more than (1− (1− 1/n)n)V .

5.2 Symmetric Additive NSW We now prove that
SMatch gives an allocation that also satisfies the EF1
property, making it not only approximately efficient but
also a fair allocation. EF1 is formally defined as follows.

Definition 5.2 ([Bud11]). Envy-Free up to one item
(EF1): An allocation x of m indivisible items among n
agents satisfies the envy-free up to one item property, if
for any pair of agents i, î, either vi(xi) ≥ vi(xî), or there
exists some item g ∈ xî such that vi(xi) ≥ vi(xî\{g}).

That is, if an agent i values another agent î’s alloca-

tion more than her own, which is termed commonly by
saying agent i envies agent î, then there must be some
item in î’s allocation upon whose removal this envy is
eliminated.

Theorem 5.4. The output of SMatch satisfies the EF1
fairness property.

Proof. For every agent i and j ≥ 1, the item gij allocated
to i in the jth iteration of SMatch is valued more by i
than all items gi′k , k > j allocated to any other agent
i′ in the future iterations, as otherwise i would have
been matched to the other higher valued item in the jth

matching. Hence,
j∑
t=1

vi(git) ≥
j∑
t=2

vi(gi
′

t ). That is, after

removing the first item gi
′

1 from any agent’s bundle, the
sum of valuations of the remaining items for agent i is
not higher than her current total valuation. Thus, after
removing the item allocated to any agent in the first
matching, agent i does not envy the remaining bundle,
making the allocation EF1.
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