On the PTAS for Maximin Shares in an Indivisible Mixed Manna

Rucha Kulkarni!, Ruta Mehta!, Setareh Taki'

I University of Illinois at Urbana-Champaign
ruchark2@illinois.edu, rutameht@illinois.edu, staki2@illinois.edu

Abstract

We study fair allocation of indivisible items, both goods
and chores, under the popular fairness notion of max-
imin share (MMS). The problem is well-studied when
there are only goods (or chores), where a PTAS to com-
pute the MMS values of agents is well-known (Woegin-
ger 1997; Jansen, Klein, and Verschae 2016).

In contrast, for the mixed manna, a recent result of
(Kulkarni, Mehta, and Taki 2020) showed that finding
even an approximate MMS value of an agent up to any
approximation factor in (0, 1] is NP-hard for general
instances. In this paper, we complement the hardness
result by obtaining a PTAS to compute the MMS value,
when its absolute value is at least 1/p times either the
total value of all the goods or total cost of all the chores,
for some constant p > 1.

1 Introduction

Finding fair and efficient allocations is a fundamental
problem in algorithmic game theory. The problem has
been extensively studied for divisible resources, phrased
as the cake cutting problem; see (Robertson and Webb
1998) for a summary. Here, a division of a cake that
gave one piece to each of n agents was termed fair if it
ensured properties like (a) envy-freeness, meaning every
agent values her own piece more than those allocated
to other agents, and (b) proportionality, meaning every
agent values her piece at least 1/n fraction of her total
value for the cake.

When there are two agents, the simple cut and choose
protocol is known to work since the biblical era, where
one agent cuts the cake into two pieces and the other
agent gets to choose first. Recent years have seen a surge
of works on the fair division of indivisible items, like
school/course seats, assets and liabilities, and comput-
ing resources on networks, due to their wide applica-
tions (Steinhaus 1948; Brams and Taylor 1996; Vossen
2002; Moulin 2004; Etkin, Parekh, and Tse 2007; Budish
2011; Ghodsi et al. 2018). A simple example of allocat-
ing a single indivisible item among two agents shows

Copyright © 2021, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

that both envy-free and proportional allocations may
not exist. Therefore, Budish (2011) defined the notion of
maximin share (MMS) based on the following extension
of the cut and choose protocol. If there are n agents, an
agent partitions the items into n bundles assuming she
will get to choose last. As she may end up with the least
valued bundle, naturally, she will partition the items in
such a way that the value of the least valued bundle is
maximized. This is called her MMS value. An alloca-
tion where every agent receives a bundle of at least her
MMS value is called an MMS allocation.

This problem is well studied for the good manna
where all items are valued non-negatively by every
agent, and for the bad (chore) manna where items are
valued non-positively by everyone (See Section 1.1 for
related work). We consider a mized manna setting,
where every item can be positively valued by some
agents, and negatively valued by some. A natural start-
ing question in the quest to find MMS allocations is,

Q: Given a mixed manna, what is the MMS value of
every agent?

This question is NP-hard, even for the good manna.
Note that finding the MMS value of an agent is equiva-
lent to finding an MMS allocation when all agents have
valuations identical to this agent. Hence, the problem
of finding MMS allocations is also NP-hard, even with
identical agents and a good manna. However, (Woeg-
inger 1997) gave a PTAS for this setting. This PTAS
was later used in several works to find approximate
MMS allocations with non-identical agents (Procaccia
and Wang 2014; Kurokawa, Procaccia, and Wang 2016;
Amanatidis et al. 2017; Ghodsi et al. 2018; Garg and
Taki 2020). The best known approximation result for
the MMS problem with nonidentical agents in a chore
manna (Huang and Lu 2019) also uses a PTAS for find-
ing MMS values (Jansen, Klein, and Verschae 2016) as
a subroutine. The next question then is,

Q: Is there a PTAS to find the MMS values of agents
in a mixed manna setting?

Surprisingly, (Kulkarni, Mehta, and Taki 2020)
showed that even in a highly restricted setting of two
identical agents where the mixed manna has only two

chores, it is NP-hard to find approximate MMS values
within any constant factor. Their reduction indicates
that perhaps the bottleneck issue that makes the prob-
lem hard, is that the absolute MMS value can be ar-
bitrarily small. Intuitively speaking, as the MMS value
approaches arbitrarily close to zero, the problem of find-
ing approximate MMS values approaches that of finding
exact MMS values. In the limit where MMS = 0, every
approximate MMS value is the exact MMS value. We
then ask,

Q: If we had a guarantee that the absolute MMS value
is greater than some threshold value, say A, then does
the problem become tractable?

In this paper, we resolve this question positively for a
specific value of A. Note that since the MMS problem is
scale-free, setting A to a fixed constant will not make
the problem any easier. Therefore, A will have to be
instance dependent. To be specific, let v denote the
sum of values of an agent for all the items she values
positively, and v~ the sum of absolute values of all her
negatively valued items (chores).

Theorem 1.1 (Informal). In the case of identical
agents, there is an algorithm that: (a) when |MMS| >
min{vt,v™}/p for some constant p > 1, finds an allo-
cation that gives every agent a bundle of value at least
(1 —€)-MMS for any constant € > 0, and (b) when
IMMS| < min{vt,v™}/p, reports this by returning the
trivial allocation where all items are given to one agent.
The algorithm runs in time O(mnL), where m,n are the
number of items and agents, and L is the bit-length of
the input.

We note that our assumption is weaker than hav-
ing min{v", v~} being a constant. Also, the extensively
studied good manna and chore manna are special cases
of this setting, hence any algorithmic results here trans-
late to these settings as well.

One of the key tools used by our algorithm is a care-
fully designed Integer Program (IP) that can be solved
in polynomial-time. IPs have been used to solve related
problems in several works. (Woeginger 1997) gave a
PTAS using this idea for the machine covering prob-
lem, which is equivalent to the MMS problem in a good
manna. The MMS problem in a chore manna is equiv-
alent to machine scheduling which has a PTAS using
IP for bin packing (the dual problem). Several algo-
rithms for the bin packing problem solve a relaxation
of an TP as their main idea (De La Vega and Lueker
1981; Johnson 1982; Karmarkar and Karp 1982). Our
approach builds on these, but requires several new ideas
to handle both goods and chores simultaneously. Next
we briefly describe some of these.

Non-constant variables. The variables of the IP
will correspond to subsets of items. We show that we
only need to consider subsets with total value at most a
particular bound. With a good (chore) manna, this re-
stricts to subsets where the number of items with value
at least some fraction of the bound is a constant. While

for a mixed manna, subsets of even O(m) size may have
a small value due to positive and negative values may
cancel each other. Hence, the number of variables of the
IP is not a constant for a mixed manna.

We circumvent this issue by reducing the problem to
a problem with only goods, where a restricted set of
allocations are allowed, called valid allocations.

Allow only valid allocations. The next task is to
define constraints in the IP that ensure a valid alloca-
tion. Towards this, we define a cost function that char-
acterizes valid allocations with a single constraint.

Sign of MMS. Our approach works for both cases
MMS > 0 (Section 3), and MMS < 0 (Appendix B).
These are inherently different problems. The MMS > 0
problem maximizes the smallest bundle’s value, while
the negative MMS case minimizes the absolute value of
the largest bundle. We show that our IP for the for-
mer case can be modified to work for the later case of
MMS < 0.

1.1 Related Work

The MMS problem has been extensively studied for the
good manna (Kurokawa, Procaccia, and Wang 2016;
Ghodsi et al. 2018; Garg, McGlaughlin, and Taki 2018;
Kurokawa, Procaccia, and Wang 2018; Barman and Kr-
ishna Murthy 2017; Farhadi et al. 2019; Amanatidis
et al. 2017; Garg and Taki 2020) and chore manna (Bar-
man and Krishna Murthy 2017; Huang and Lu 2019)
settings. With a good manna, there are several algo-
rithms to find allocations that give every agent a bundle
worth a constant fraction of their MMS value; the best
factor known so far is (3/4 + 1/(12n))-MMS, by (Garg
and Taki 2020). For the chore manna, (Huang and Lu
2019) give a PTAS to find the MMS values of agents,
and an 11/9 approximate MMS allocation. The study
of the mixed manna setting started recently. (Kulkarni,
Mehta, and Taki 2020) gave a PTAS for the special case
of the problem with a constant number of agents, when
the total value of goods is some factor away from the
total absolute value of chores.

2 Preliminaries and Notation

In this section, we formally define mixed instances and
other relevant notions of maximin share. We use [k] to
denote the set {1,2---,k}, and (S;);jep to denote the
(multi-)set {S1,82 ..., Sk}

Definition 2.1. An MMS instance is a tuple
(N, M, v), where N is a set of n agents, M is a set
of m indivisible items, and v : 2™ — R is the identical
additive valuation function of all agents, represented by

v(8) = esvj for S T M.

A partition of all items among all agents is termed
an allocation, denoted by A = {A1, Ag, -+, A, }. Thus,
A; N Ay = 0 for all distinct 7,4" in N, and U; 4; = M.

Definition 2.2 (MMS value). Given an MMS instance,

let T1,,(M) be the set of all possible allocations of M
into n sets. The mazimin share (MMS) wvalue of an
agent, denoted by MMS" (M), is defined as,

MMS™" (M) = max min v(Ag) .
AEIL, (M) AeA

We refer to MMS™ (M) by MMS when the qualifiers n
and M are clear. Note that MMS can be negative too.

An allocation which gives every agent a set of items
worth at least MMS is called an MMS allocation. Note
that all agents have the same valuation function v for
M, hence the MMS values are same for all agents. Also,
the allocation determining the MMS value for any agent
is an MMS allocation. Hence when the agents are iden-
tical MMS allocations always exist. However, finding
an MMS allocation is known to be NP-Hard (Bouveret
and Lemaitre 2016). Thus, we search for a PTAS to find
almost optimal allocations, termed (1 — €)-MMS alloca-
tions, defined as follows.

Definition 2.3 ((1 — €)-MMS allocation). A is called
a (1 —¢€)-MMS allocation, if for a given € > 0, for each
agent i € N we have v(4;) > (1 — e)MMS if MMS > 0,
andv(A;) > (1/(1—€))MMS, if MMS < 0. Equivalently,

v(4;) > min{(1 — e MMS, (1/(1 — €))MMS}.

Definition 2.4 (MMS problem). Given an MMS
instance (N, M,v), the MMS problem is to find a
(1 —€)-MMS allocation of M among N

Items of a mixed manna can be divided into two sets.
Goods are the items valued positively according to v.
The set of goods is denoted by M+ = {j € M | v; > 0}.
Chores are items valued negatively, and the set of chores
is termed M~ = {j € M | v; < 0}. We denote by v
the sum of values of all goods in the manna. That is,
vt =3 caq+ vj- Similarly, we denote by v~ the sum
of absolute values of all chores, i.e., v™ =3, - |vj].

To circumvent the hardness result of (Kulkarni,
Mehta, and Taki 2020) for the MMS problem for any
e € [0,1), we make the assumption that |MMS| >
min{v",v"}/p, for some constant p > 1. As we can-
not decide before computing the MMS value if a given
instance satisfies this property, we pose the following
problem, termed the Bounded MMS problem, denoted
by B-MMS.

Definition 2.5 (B-MMS problem). Given an MMS in-
stance (N, M, v) and an € > 0, return a (1 — €)-MMS
allocation if MMS > min{v™,v~}/p for some constant
p > 1, else report MMS < min{v™,v~}/p by returning
the trivial allocation where one agent gets all items M.

In this paper, we give a polynomial time algorithm
that solves the B-MMS problem. In other words, we
provide a PTAS to find the MMS values of agents in a
mixed manna, when the absolute MMS values are higher
than min{v*,v~}/p, for some constant p > 1.

The following lemma by (Kulkarni, Mehta, and Taki
2020) shows an easy way to decide the sign of MMS, al-

lowing us to design separate approaches for the negative
and non-negative MMS cases.

Lemma 2.1. v(M) > 0 if MMS > 0.

For solving the B-MMS problem, we first find the sign
of MMS using Lemma 2.1, then apply the appropriate
algorithm for that case.

3 Algorithm for B-MMS when MMS > 0

In this section, we describe a PTAS for the B-MMS prob-
lem for the MMS > 0 case. All missing proofs of this
section are are provided in Appendix A. The main parts
of the PTAS are explained and solved in separate sub-
sections.

3.1 Reducing B-MMS to GC-MMS

We first reduce the given B-MMS problem to a new
problem with only goods called the Goods manna Con-
strained MMS problem, denoted by GC-MMS. At a high
level, this is similar to the MMS problem, but it com-
putes optimal allocations over a restricted set of parti-
tions, called wvalid allocations (described shortly).

The intuition behind defining GC-MMS problem is as
follows: Suppose we replace every chore by n—1 goods,
each of value equal to the absolute value of the chore.
Lets call these good-copies of the chores. Every time we
want to assign a chore j € M to some agent, we instead
assign one of the n—1 good-copies of j to the remaining
n—1 agents (one copy for each n— 1 agents). This adds
exactly |v;| value to every bundle and therefore keeps
their relative order the same. Once we do this for every
chore, the value added to each bundle is exactly v—, and
is the same for every partition in II"(M). Therefore, if
we restrict the allocations in the new setting to allow an
agent to get at most one good-copy of any chore, then
MMS allocations in the two settings are equivalent.

Following this intuition, we define a GC-MMS in-
stance and valid allocations as follows.

Definition 3.1 (GC-MMS instance). A tuple
N, G,(Sj)jem-1,u), where N is a set of agents,
G is a set of goods, (Sj)jeim-] are m— sets of goods,
each containing (n — 1) identical copies of a good, and
u: MU (S))jem-1 — Ry ds the identical valuation
function of the agents in N for all items GU(S;) jefm-1-

Definition 3.2 (Valid allocation). Given a GC-MMS
instance (N, G, (Sj)jepm-1,u), an allocation A is valid
if no agent receives more than 1 item from any set S; €
(Sj)jeim-1, t-e., foralli e N,j e [m™], |[A4;NS;| < 1.

The GC-MMS problem asks to find a wvalid allocation
that maximizes the value of the smallest bundle, i.e.,
an MMS allocation over the valid allocations. We abuse

notation to denote both the problem and the value by
GC-MMS, and formally define them as follows.

Definition 3.3 (GC-MMS value). Given a GC-MMS
instance (N, G, (S;)jem-1,u), let F be the set of all

valid allocations. The GC-MMS wvalue of the instance,
denoted by GC-MMS, is defined as follows.

GC-MMS = argmax min v(A)

AeF AcA
Since it is NP-hard to compute GC-MMS (even when
(Sj)jeim-1 = 0), define the following approximate ver-

sion of the problem.

Definition 3.4 (GC-MMS problem). Given a GC-MMS
instance (N, G,(Sj)jem-1,u) and € > 0, return
a walid allocation A such that minagcav(A) >
(1 —€)GC-MMS.

Next we show that the B-MMS problem can be re-
duced to GC-MMS problem such that a PTAS for the
latter gives a PTAS for the former.

Given an instance (N, M,v) we define the corre-

sponding GC-MMS instance (N, G, (S;)jcm-], u) as fol-
lows: The set of agents is unchanged, G = M+, m~™ =
IM~|, and for all j € M™, define S; to be a set of
(n — 1) goods represented as S; := {(j,k)|k € [n — 1]}
— &§; consists of good-copies of chore j. Finally, define
u(j) = v(y) for all j € G and u((j,k)) = —v(j) for all
jEM ™ and k € [n —1].
Lemma 3.1. Allocations of B-MMS are in one-to-one
correspondence with valid allocations of GC-MMS, such
that if allocation B™ of the former maps to allocation
C™ of the later then u(C;) = v(B;) +v~, Vi e N.

Proof. Given a B-MMS allocation B™, add good-copies
of each chore to agents who did not receive the chore
in B™, and discard all chores. This gives a GC-MMS
allocation C™. The reverse allocation is obtained by
similarly discarding all good-copies and assigning the
corresponding chore to the agent who did not receive
any good-copy.

Every agent i € N receives in C; all the goods as-
signed to her in B;. Every chore that was assigned to
her in B; is discarded in C;. Due to this, her value
increases by the absolute value of chores allotted to
her in B;. Further, for every chore not assigned to
her, she receives a good-copy of it in C;. As for all
j € C,u(j) = |v(g*)| for the corresponding j* in M,
each good-copy increases her value by the absolute
value of the corresponding chore. Her total valuation in-
creases by the absolute value of all chores not assigned
to her as well. Hence, the difference u(C;) — v(B;) is

O

exactly, 30 icp v(j) + X0 ¢p, v(i) =0

Corollary 3.1. GC-MMS, relates to the MMS wvalue of
the B-MMS problem as,

GC-MMS = MMS + v~ (1)

Equation (1) allows to relate the approximation pa-
rameters of B-MMS and GC-MMS allocations as follows.

Theorem 3.1. If MMS > v~ /p, then a (1 —
OTEP))GC—MMS allocation gives a (1 — €)-MMS alloca-
tion, and therefore a PTAS for GC-MMS gives a PTAS

for the B-MMS problem.

Proof. Let € = g Take the (1— ¢'YGC-MMS alloca-
tion, say C'™, and consider the corresponding allocation
BT of the B-MMS instance as described in the proof of
Lemma 3.1. From Lemma 3.1, the smallest bundle in
BT has value (1 — ¢')GC-MMS — v~

If MMS > v~ /p, we have, (1 — ¢)GC-MMS — v~ >
(1—=€)YMMS+v7) —v™ > (1 —€)(MMS + pMMS) —
pMMS = (1 — (1 + p)¢')MMS = (1 — €)MMS. Therefore,
B7 is a (1 — €)-MMS allocation

Since p and € are constants in the B-MMS problem,
¢’ is also a constant. Therefore, a PTAS for GC-MMS is
indeed a PTAS for the B-MMS problem as well. O

Due to the above theorem, it suffices to obtain a
PTAS for the GC-MMS problem.

3.2 Algorithm for GC-MMS

Algorithm 1 for GC-MMS will perform a search for the
highest value p for which we get an allocation that gives
every agent at least a u-valued bundle. For this we per-
form a search on a multiplicative grid over all possible
values of GC-MMS, obtained as follows. First, we have
v™/p < MMS < v(M)/n = (vF — v~)/n. Combined
with Equation (1), we get v~ + v~ /p < GC-MMS <
(vt —v7)/n+ov .

In each iteration of the search, it first checks if there
is an item with value more than p. First, there will
be no such chore. Because if there was one, say ¢, we
have ¢ > p > GC-MMS = MMS + v~ which implies
MMS < ¢—v~ <0.

If there is a good j with v(j) > u, we have p— v~ >
GC-MMS —v~ = MMS(B-MMS instance). Using this we
find B™, a solution of the B-MMS instance as follows:
assign good j and all the chores to an agent, and remove
the agent and her bundle. The following allocation for
the resulting instance is feasible, and has equal or higher
MMS value. From any MMS allocation of the B-MMS
instance, (a) remove all chores and add them to the
part containing the good j, and (b) remove all goods
except j from this part and arbitrarily distribute among
the remaining parts. The MMS value of the resulting
instance is not lower, and therefore it suffices to find it’s
(1 — €)-MMS allocation using the PTAS of (Woeginger
1997). Algorithm 1 returns allocation C™ corresponding
to this B-MMS allocation.

If every item has value at most u, the algorithm ap-

plies a subroutine Exists-GC-MMS, for which we prove
in Section 3.3,
Theorem 3.2. Exists-GC-MMS((N, G, (S;) jem-1,), €, i)
returns a tuple (A, flag) with flag = true and
u(A) > (1 — e)u, VA € A, whenever p < GC-MMS.
And it runs in O(mn) time.

If Exists-GC-MMS returns a false flag, the Algorithm
resets u < (1 — ¢)p and starts the next iteration, else
returns the allocation obtained and stops. Theorem 3.2
implies the following. When Algorithm 1 stops, say for a

Algorithm 1: Algorithm for GC-MMS
Input : (N,G,(S))jcim-1,u), € >0
Output: (1 — ¢')GC-MMS allocation if
GC-MMS > (14 1/p)v—
1 e+ €/ p—vT/n+(1—1/n)v™
2 while > (1+1/p)v~ do
3 if 3j € G :u(j) > p then
4 A=(A1,...,An), 4, < {j}
5 (A1,...,An1) < (1 — €)-MMS partition
of (N\ {n},G,u) // use PTAS of
(Woeginger 1997)

6 A; A, U{(4,1)} for all i € [n — 1] and
j€[m™]

7 | return A

8 (A, flag) +

Exists-GC-MMS((N, G, (S;) jem-1,), € 1)
9 If flag then return A
10 else p+ (1—¢€)u
11 A= (44,...,A,) where A; = {(4,7) : Vj € [m~]}
forie€n—1],A4,=G // agents 1 to n—1
each get one good-copy of all chores.
12 return A

value p*, we know GC-MMS < p* /(1 —€), from the false
flag returned in the previous iteration. From this iter-
ation’s output, we have a (1 — €)2GC-MMS allocation.
Fixing € as €'/2 gives,

Lemma 3.2. If GC-MMS > (1 + 1/p)v—, Algorithm 1
returns a (1 — €')GC-MMS allocation.

Now we are ready to show Theorem 1.1 for the case
when MMS > 0.

Theorem 3.3. There is an algorithm to solve the
B-MMS problem for the case MMS > 0, that runs in
time O(mnlL), where L is the number of bits needed to
represent function v.

Proof. From Theorem 3.1, it suffices to get a
PTAS for the corresponding GC-MMS problem. By
Lemma 3.2 Algorithm 1 does solve a GC-MMS prob-
lem. The while loop of the algorithm runs for
(v++(n—1)v’ _ (1+p)v’) <

%log o 2(1:'”)L many times.
By Theorem 3.2 and (Woeginger 1997), every iteration
of the while loop takes at most O(mn) time, and there-

fore the overall running time is O(mnL). O

Remark 3.1. The proof of Theorem 1.1 for the case
when MMS < 0 is similar, and in some sense simpler,
and discussed in Appendiz B.

The next section shows Theorem 3.2.

3.3 Algorithm for Exists-GC-MMS

At a high level, we first map the set of items in the
Exists-GC-MMS instance to multi-sets of numbers cor-

responding to their values (scaled to have p = 9[1]2
for technical reasons). Valid partitions of these num-
bers are defined analogously like valid allocations of the
GC-MMS items. We then classify the values as BIG or
SMALL. The key component of the algorithm is an IP
to find a valid partition of the BIG values such that (a)
every part has value at least 9([2]2—[17), and (b) there
are enough SMALL values to greedily allocate over this
partition and have every part valued at least 9 [5 2. We
now discuss the details of the algorithm formally.

Exists-GC-MMS has two steps 1) Pre-processing and
2) Main Algorithm.
Pre-processing.(Algorithm 2, line 1) Let E := [1].
Note that F is a constant integer that only depends on
€ and not on parameters in the GC-MMS instance. Scale
the valuations v by 9E2/u. Let V9 = (g;)(je[m+)) and
V¢ = Ujem-1Cj, where C; = (cf)kg[n,” be multi-sets
of numbers corresponding to scaled valuations, respec-
tively of M* and (S;) c[m-]- Let T =VIU V.

This completes the pre-processing step. The following
lemmas characterize partitions of 7 that correspond to
approximately optimal GC-MMS allocations.

Definition 3.5 (Valid Partition of 7). We call a par-
tition P = (Py,...,P,) of values in T valid if each
P;; contains at most one element from each Cj, i.e.,
|P.NC;| <1forallkeln|and je [m].

It is easy to see that each valid partition of 7 is equiv-
alent to a valid allocation in its corresponding GC-MMS
instance. With the scaling step, this directly implies,

Lemma 3.3. Giwen a GC-MMS instance
N,G,(Si)iem-1uw), if p < GC-MMS then there
is a walid partition of T where the sum of values in
each part is at least 9E2.

As FE = [1/€], we can show that a part of value at
least 9E2 — 9F will correspond to a bundle of value at
least (1 — €)u. We use this and Lemma 3.3 to show the
next lemma.

Lemma 3.4. A wvalid partition of T where the sum of
values in each part is at least 9(E?—E) is equivalent to a
valid allocation for its corresponding GC-MMS instance
where each bundle has value at least (1 — €)p.

Main Algorithm. Call a valid partition of T optimal
if the sum of values in each part is at least 9(E? — E).
This step returns an optimal partition if y < GC-MMS,
else correctly reports . > GC-MMS by returning flag =
false. Note that Algorithm 1 runs Exists-GC-MMS only
if every item has value at most u. Hence, after scaling
by 9E?, we can assume t < 9E%, Vt € T. The key of
the algorithm is an IP. We first explain the IP.

Notation. We define SMALL and BIG values in 7.
Call a value t € T SMALL if ¢ < 3F and BIG if
t > 3E. For each T C T let SMALL(T') be the set
of all small values in T and BIG(T) be the set of
all big values in T. We call a set C; € V¢ small

if it contains SI\/IALL values and big otherwise!. Let
o,0%, (n — 1) - 0~ respectively be the sum of all val-
ues in SMALL(T), SMALL(VY) and SMALL(V®), , i.e.,
0= Y iesmaLL(T) b O = DresmaLi(vey t and 07 =
(X tesmatL(ve) t)/(n —1). Note that o~ is equal to the
sum of values obtained by picking one value from each
small Cj, and 0 =0t + (n —1)o~

Next, we know that every BIG value will be in the
range [3E,9E?]. For all integers r in [3E,9E?], let
n.", n~ respectively be the number of values in BIG(V9)
and the number of sets C'; with integral part of values
r. Thus, (n—1)n,” +n," items j in VIUV have [j| = 7.

We now define notation to represent a subset of
BIG values and their sum. Let X denote a part in a
partition of 7. We define the type of X by 7(X) =
(1(X),7(X)y = (138,--- s Top2s T8I, - - - ,Top2); here
T,,Tr are resp. the number of values in BIG(X nv9)
and BIG(X NV¢) with integer part r. Let SIZE(7(X)) :=
Z r(r, +7r) be the total sum of these rounded values
in BIG(T NnX).

Using this notation, we design an IP to find an as-
signment of BIG values in an optimal partition. First,
observe that every BIG value is at most 9E2. Thus, if
an optimal partition has some part valued more than
18E2, we can remove values until the size of this set is
in the range [9E?, 18 E?]. Finding a partial allocation of
BIG values that assigns at least 9E? value to all parts
suffices to solve Exists-GC-MMS, as we can arbitrarily
add the unallocated values. Thus, we will only consider
types whose size SIzE(.) is at most 18 E2.

The variables of the IP correspond to all types 7 that
satisfy (i) S1ze(r) < 18E?, (i) 7, < n;f, (iii) 7 < n, .
Let 7, 7). 7@ be an enumeration of all vari-
ables. Intuitively, we consider types that represent valid
allocations of items corresponding to the BIG values in
a GC-MMS instance. Every IP variable takes an integer
value equal to the number of times the corresponding
type is selected. This in turn represents the number of
parts in the output allocation that have a subset of BIG
items as represented by this type.

Lemma 3.5. The number of IP variables T' is O(1).

Proof. Every type with size at most 182 can have at
most 6F BIG values, as every BIG value is at least 3E.
Each value is one of [3E,9E?], a constant sized set.
Hence, the number of types 7 and 7 are each at most
(9E? — 3E + 1)°E. The total number of types at most
twice this value, hence a constant as E is a constant.
The number of variables of the IP is at most the number
of types with size at most 18E2, hence is constant. [

Before defining the IP, we define two cost functions
for every type. These are used to define constraints to
allocate SMALL items.

'Note that each C;, j € [m™] contains n— 1 equal values.
i.e, for each C}, either SMALL(C;) =) or SMALL(C;) = Cj.

First, define c(7(X)) := max{0,9E? — 6E —
S1zZE(7(X))}. The intuition for this function is as fol-
lows. Our aim is to create an optimal partition. If the
sum of BIG values SizE(7(X)) < 9(E? — E), we must
add values from SMALL(T) to X. The required sum
from SMALL, is at least 9E? — 9F — S1ze(7(X)). How-
ever, SMALL(T") does not have arbitrarily precise val-
ues. As every SMALL value is at most 3E, we may have
to add SMALL items until the net value of the part be-
comes 3E more than required, i.e., 9E? —6E. Hence the
cost function ¢(7(X)) is defined as specified.

The second cost function captures the value that
must be added to a part from SMALL(VY). If a part
has ¢(7) > 0, we can add at most value o~ to the

part from SMALL(VC). Hence, the minimum value from
SI\/IALL(VQ) is o (7(X)) := max{0,c(r(X)) — o~ }.

Using these notions, we define the following IP for
finding an allocation of BIG values.

r
ij =n; z; € {0} UN,Vj e [I] (2)
j=1

r
Zz&j)xj < nfVr e [3E,9E% (3)
j=1

r
Z?ﬁj)xj < (n—1)n,,Vr € [3E,9E? (4)
j=1

G (J)x <o

M’ﬂ

<ot (5)

I\M’ﬂ

le

The Exists-GC-MMS algorithm is as follows. After ap-
plying the pre-processing step, it defines and solves the
above IP. If the IP has a solution, then first it considers
the items from the GC-MMS instance that correspond
to the BIG values in 7. The algorithm partitions all
these items in n bundles by creating n subsets, with x;
subsets corresponding to type 7(¥). After this, it con-
siders the subsets of BIG items that do not have total
sum of values at least 9E? — 9F. To each of these, it
first adds the SMALL items corresponding to the small
C; subsets, by adding at most one item from each sub-
set Cj, in any order. If upon adding these, the value of
the set is still not 9E2 — 9F, it adds items correspond-
ing to the SMALL(V?) set, until the total sum of values
is at least 9E2 — 9E. The algorithm returns the tuple
(A, true), where A is the allocation formed by this pro-
cess. If the IP does not have a solution, it returns the
tuple (0, flag = false).

Algorithm 2 formally describes Exists-GC-MMS. We
now analyze the correctness of Exists-GC-MMS.

Lemma 3.6. If uy < GC-MMS, then IP has a solution.

Proof. As p < GC-MMS, from Lemma 3.3, there is a
valid partition of 7" with sum of values of each part at
least 9E2. Let this partition be T'F. Let 7¢ = 7(TF)

Algorithm 2: Exists-GC-MMS

Input : (N, G, (S))je(m-1 u), € p
Output: (A, True) if there exists a
(1 — €)-GC-MMS allocation A and
(D, False) otherwise

=

ey a0 (25) <
Ve <= Ujem- G5 G5 = {ci, .. .,02*1}7

ok = u(j, k), (5, k) € 8;,¥8; € (S)iepm-1;
T < VIuye

2 if IP has a solution X for T then
3 g1
a for alli:z; #0: do
5 Create x; parts P; to Pjig,
6 Add BIG values to each Py, k € [j,7 + =]
L asper 7 ; j e j4a; +1
7 while 3k :3, p j< (9E? — 9E) do
8 while 37, p j < (9E* —9E) do
If P,NC; =0 for any j € [m~| then
add one value from C; to Py
10 else add any value from SMALL(V9)
to Pk
11 while there is an unallocated value k from
C; for any j € [m~] do
12 LAddktoanyPZ-:PZ-ﬁCj:@
13 Add remaining unallocated values arbitrarily
14 A + allocation corresponding to
P=(P, - ,P) // use Lemma 3.3
15 return (A, True)

16 return (0, False)

(=)

be the type of each part, and 7'¥ = [r1... 77], be the
multi-set of types of all parts.

Constraints (2), (3) and (4) hold for 7' by definition
of a valid partition. For any 7' € 7'¥ with ¢(7%) =
0, we have }>,cquar(ryt = ¢(7') = 0, and for any
7t € 7P with ¢(r!) > 0, we have ZteSMALL(T}P)t >
9E? — 3 icpigeriryt = 9E? — 6E — S1ze(r') > ().
The second inequality holds because the SizZE function
rounds down all values, and there are at most 6FE BIG
values in each T'¥'. By adding the above inequality for
all 7% € 7P, we obtain (5) of the IP.

Since each Til? is a subset of a valid part, its corre-
sponding type 7° has at most one value from each Cj.
Therefore, for any 7¢ € 7'F with o+ (%) > 0 we have,
for _ZtGSMALL(vaa_)t > o) — ZteSMAL_L(TiﬁVC) t =
o(t') — o= > o (%). Moreover, for any 7 € 7'F with
o™ (1") = 0 we have, for D teSMALL(rirye) t = ot () =
0. By adding the above inequality for all T}¥' € T we
get constraint (5). Thus, 7' is a solution of the IP. [

Lemma 3.7. If the IP has a solution, then the allo-

cation returned by Exists-GC-MMS is an allocation that
gives every agent a bundle of value at least (1 — €)pu.

Proof. Let 7°° be the solution of the IP and P*°! be the
partition of the values formed by Exists-GC-MMS after
finding 7°°'. We show that each part of P*°! has value
at least (9E2 — 9F). From Lemma 3.4, we get that in
A, every agent gets a bundle of value at least (1 — €)pu.

After assigning BIG values to P; as per the type 77,
suppose there are parts with value less than 9E% — 9E.

Consider any such part P. The algorithm first adds
SMALL values from V9. As 7% satisfies constraint (5)
(a) of the IP, then ¢(7(P)) < o™. That is, the value to
add to P so that the sum of values in P is at least 9E? —
9F is at most the sum of all SMALL values. We first add
values from SMALL(V®). Suppose after receiving one
value from each set in V¢, P still has value less than
(9E% —9E). As 75 satisfies constraint (b) of (5) of the
IP, the total cost from SMALL(V®) for all parts together
is at most oF. As the cost function is monotonic with
number of parts, the total cost from SMALL(V®) for P
also is at most SMALL(V®). Hence, there are enough
values in SMALL(V9) to add to P; to increase its value
to at least (9E% — 9E).

After adding values to P, its total value is at most
9FE? — 6F, as every item has value at most 3E.
Thus, the value added to it from SMALL values is at
most ¢(7(P)). The total cost of the remaining parts
is Y piapc(T(P)) = X pepoa e(T(P)) — ¢(7(P)) <
ot — (the sum of SMALL values assigned to P), which
is exactly the total value of unassigned SMALL val-
ues. Hence, constraint 5 (a) is satisfied for the smaller
set 75°)\7(P). Similarly, we can show constraint 5 (b)
also is satisfied. The initial constraints 2, 4 and 3 are
satisfied for 7°°'\7(P) by the validity of 75°/. Hence
75°\7(P) is a solution to the IP for the smaller case
after removing P and its assigned values. By induction,
we can assign values to every part until all parts are
satisfied. Adding any unallocated values arbitrarily in
Line 13 only increases the value of each bundle.

Hence, the partition P*° obtained has every bundle
of value at least 9E2 — 9F. From Lemma 3.4, the cor-
responding allocation A gives every agent a bundle of
value at least (1 — €)pu. O

Lemma 3.8. Exists-GC-MMS runs in time O(mn).

Proof. The time to run ExistssGC-MMS is asymptot-
ically equal to the time for constructing and solving
the IP. Lenstra’s algorithm (Lenstra Jr 1983) takes

time exponential in the number of variables, O(21/€") =

o2/ €/2) here, and polynomial in the largest coefficient
of any variable in all inequalities, m* + (n — 1)m~ =
O(mn) here. Note that o and o are at most n - 9E2.
Hence, the IP requires O(21/< mn) = O(mn) time. O

Lemmas 3.6, 3.7 and 3.8 together prove Theorem 3.2.

Acknowledgements

Rucha Kulkarni and Ruta Mehta thank the support of
NSF Grant CCF-1750436 (CAREER). Setareh Taki is
partially supported by NSF Grant CCF-1942321 (CA-
REER).

References

Amanatidis, G.; Markakis, E.; Nikzad, A.; and Saberi,
A. 2017. Approximation Algorithms for Computing
Maximin Share Allocations. ACM Trans. Algorithms
13(4): 52:1-52:28.

Barman, S.; and Krishna Murthy, S. K. 2017. Approx-
imation algorithms for maximin fair division. In Pro-
ceedings of the 2017 ACM Conference on Economics
and Computation, 647-664. ACM.

Bouveret, S.; and Lemaitre, M. 2016. Characterizing
conflicts in fair division of indivisible goods using a scale
of criteria. Autonomous Agents and Multi-Agent Sys-
tems 30(2): 259-290.

Brams, S. J.; and Taylor, A. D. 1996. Fair Division:
From cake-cutting to dispute resolution. Cambridge
University Press.

Budish, E. 2011. The combinatorial assignment prob-
lem: Approximate competitive equilibrium from equal
incomes. Journal of Political Economy 119(6): 1061—
1103.

De La Vega, W. F.; and Lueker, G. S. 1981. Bin packing
can be solved within 1+ ¢ in linear time. Combinatorica
1(4): 349-355.

Etkin, R.; Parekh, A.; and Tse, D. 2007. Spectrum
sharing for unlicensed bands. IEEE Journal on selected
areas in communications 25(3): 517-528.

Farhadi, A.; Ghodsi, M.; Hajiaghayi, M. T.; Lahaie,
S.; Pennock, D. M.; Seddighin, M.; Seddighin, S.; and
Yami, H. 2019. Fair Allocation of Indivisible Goods to
Asymmetric Agents. J. Artif. Intell. Res. 64: 1-20.

Garg, J.; McGlaughlin, P.; and Taki, S. 2018. Approx-
imating Maximin Share Allocations. In 2nd Sympo-
stum on Simplicity in Algorithms (SOSA 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Garg, J.; and Taki, S. 2020. An Improved Approxima-
tion Algorithm for Maximin Shares. In Proceedings of
the 21st ACM Conference on Economics and Compu-
tation, 379-380.

Ghodsi, M.; Hajiaghayi, M.; Seddighin, M.; Seddighin,
S.; and Yami, H. 2018. Fair Allocation of Indivisible
Goods: Improvements and Generalizations. In Proceed-
ings of the 2018 ACM Conference on Economics and
Computation.

Huang, X.; and Lu, P. 2019. An algorithmic frame-
work for approximating maximin share allocation of
chores. CoRR abs/1907.04505. URL http://arxiv.org/
abs/1907.04505.

Jansen, K.; Klein, K.; and Verschae, J. 2016. Clos-
ing the Gap for Makespan Scheduling via Sparsifica-
tion Techniques. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP, vol-
ume 55, 72:1-72:13.

Johnson, D. S. 1982. The NP-completeness column: An
ongoing guide. Journal of Algorithms 3(4): 381-395.

Karmarkar, N.; and Karp, R. M. 1982. An effi-
cient approximation scheme for the one-dimensional
bin-packing problem. In 28rd Annual Symposium on
Foundations of Computer Science (sfes 1982), 312-320.
IEEE.

Kulkarni, R.; Mehta, R.; and Taki, S. 2020. Ap-
proximating Maximin Shares with Mixed Manna.
CoRR abs/2007.09133. URL https://arxiv.org/abs/
2007.09133.

Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2016.
When Can the Maximin Share Guarantee Be Guar-
anteed? In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, AAAT16, 523-529.
AAAT Press.

Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2018.
Fair Enough: Guaranteeing Approximate Maximin
Shares. J. ACM 65(2): 8:1-8:27.

Lenstra Jr, H. W. 1983. Integer programming with a
fixed number of variables. Mathematics of operations
research 8(4): 538-548.

Moulin, H. 2004. Fair division and collective welfare.
MIT press.

Procaccia, A. D.; and Wang, J. 2014. Fair enough:
Guaranteeing approximate maximin shares. In Proceed-
ings of the fifteenth ACM conference on Economics and
computation, 675-692. ACM.

Robertson, J.; and Webb, W. 1998. Cake-cutting algo-
rithms: Be fair if you can. CRC Press.

Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16: 101-104.

Vossen, T. 2002. Fair allocation concepts in air traf-
fic management. Ph.D. thesis, Supervisor: MO Ball,
University of Martyland, College Park, Md.

Woeginger, G. J. 1997. A polynomial-time approxima-
tion scheme for maximizing the minimum machine com-
pletion time. Operations Research Letters 20(4): 149—
154.

A Missing Proofs

Lemma 3.2. If GC-MMS > (1 + 1/p)v—, Algorithm 1
returns a (1 — €')GC-MMS allocation.

Proof. First, suppose there is a good j € G : u(j) > p,
the B-MMS allocation corresponding to the GC-MMS
allocation returned gives the single good with all chores
to one agent, say i. The value of i’'s B-MMS bundle is

u— v~ . Note that in every iteration of the algorithm,
1 > GC-MMS, as the algorithm stops when it finds the
first u which gives every agent a bundle of value at least
u. Hence, from Equation (1), the value of i’s B-MMS
bundle is p — v~ > GC-MMS — v~ > MMS.

By allocating all chores to ¢, and a single good, the
MMS values of the remaining agents over the remaining
goods only increases. Hence, a (1 — €')-MMS allocation
of these, combined with i’s bundle, is a (1 — ¢/)GC-MMS
allocation.

Now consider the second case when for all items
j € G : u(j) < p. Denote the value of p consid-
ered by Algorithm 1 for which Exists-GC-MMS returns
flag = true by p*. From Theorem 3.2, the correspond-
ing allocation A returned by Exists-GC-MMS has all
bundles of value at least (1 — €)u*.

If Exists-GC-MMS returns flag = true for the first
value of p considered, then as this value is the upper
bound on p, we have GC-MMS < p*. Hence (1 —é)u* >
(1 —)GC-MMS > (1 — €')GC-MMS, where the last in-
equality follows as € = €' /2.

Otherwise, for the value of p considered in the
previous iteration before p*, that is, for p*/(1 —
€), Exists-GC-MMS returned flag = false. Hence
GC-MMS < p*/(1—€). Hence, the smallest valued bun-
dle in A has value at least (1—€)u* > (1—€)2GC-MMS >
(1 —€¢)GC-MMS.

Thus, in both cases, A is a (1 — ¢')GC-MMS alloca-
tion. O

Lemma 3.3. Given a GC-MMS instance
N,G,(Sj)jem-1puw), if p < GC-MMS then there
is a wvalid partition of T where the sum of values in
each part is at least 9E2.

Proof. Since p < GC-MMS, there is a valid allocation
for (N, G, (S))jcim-],u) where all bundles have value
at least u. If we scale the value of each item by 9E?/pu,
the value of all bundles will also be scaled by 9E?/u
because v is additive. Hence we get a valid partition
where all parts have a total sum of at least 9E2. O

Lemma 3.4. A wvalid partition of T where the sum of
values in each part is at least 9(E?—E) is equivalent to a
valid allocation for its corresponding GC-MMS instance
where each bundle has value at least (1 — €)p.

Proof. Let P = (P, ...
1etA:(A1,...

, Pn) be the valid partition and
,Ay) be its corresponding valid alloca-

tion. We have >° p p= (9E2 /u)u(A;). Hence,

> p>9(E? - E) Vi € [n]

9E? 1 2 ;
— u(A;) > p (9Egb:29E> Vi € [n]
= u(A;) > p(l - %) vi e [n]
., ’U,(AZ) > (1 - E)N Vi e [n]

The last inequality holds because E = [1] > O

A=

B Algorithm for B-MMS when MMS < 0

In this section, we will give an overview of the algorithm
for the B-MMS problem when MMS < 0. That is, v™
is less than v~ and |[MMS| > v /p, for some constant
p > 1. To obtain this result, we reduce the B-MMS
problem to the CC-MMS problem, defined shortly. We
prove that a PTAS for the CC-MMS problem implies a
PTAS for the B-MMS problem. To complete the result,
in the major part of this Section, we show a PTAS for
the CC-MMS problem.

B.1 Technical Overview

In the entire discussion, we will consider the value of
each chore as its absolute value, intuitively representing
the cost of doing the chore.

The outline of the algorithm is the same as the
counter case when MMS > 0. To avoid repetition, we
will focus on highlighting the main ideas that differ from
the approach used in Section 3. We first reduce B-MMS
to a problem with only chores, denoted by CC-MMS.
We substitute every good of B-MMS by a set of (n —1)
chores in CC-MMS; and call them chore-copies of the
good. An optimal allocation here has the lowest value
for the largest bundle (call this value CC-MMS). We
find via a search algorithm, that runs a subroutine
Exists-CC-MMS in each iteration, the lowest value u for
which there exists an allocation that gives every agent
at most a pu valued bundle.

Exists-CC-MMS (Algorithm 4), scales the values of
items by 9E?/u and calls the set of all scaled val-
uations (of chores and chore-copies) 7. We prove in
Lemma B.5 that a valid partition of T (defined in Def-
inition B.6), defined as one where the sum of values
in each part is at most 9E? + 9E, implies a u/(1 — €)
valued valid allocation for the corresponding CC-MMS
instance. Then, Exists-CC-MMS classifies the set of val-
ues in T as BIG(T) or SMALL(T), solves an IP to find
a suitable allocation of values in BIG(T), and allocates
the SMALL(T") values greedily upon the allocation of
BIG(T).

We then define types of subsets of BIG(T) with a vec-
tor 7 = [T,). However, when MMS < 0, we consider
the closest integer to the values when they are rounded
up. The variables of the IP designed for Exists-CC-MMS
correspond to all type vectors 7 that represent all bun-
dles of BIG(T) with total value at most 9E? + 9E, and
those that contain at most one chore-copy of every BIG
good.

The IP has constraints to select n types that ensure
the selection at least covers all given chores and chore-
copies. We now define two surplus functions. The first,
denoted by ¢(7(X)), represents the cost that can be
added to every bundle X from SMALL(T) while keep-
ing the bundle’s value at most 9E2 + 6E. This high-
est allowed value is 3E lower than our desired bound
of 9E? + 9E. This is because we cannot form bundles
of SMALL(T) values of arbitrary precision. At a high
level, if the TP finds a solution where all the SMALL(T)
values can be filled while keeping every bundle’s to-
tal cost at most 9E2 + 6F, then as every SMALL(T)
value is at most 3F, we can greedily allocate all these
without any bundle’s cost exceeding 9E? + 9E. For-
mally, if Size(7(X)) is the cost of a bundle from the
BIG(7) values, we define ¢(7(X)) for Exists-CC-MMS
as max{0,9E? +6E — Size(7(X))}. Next, 0~ (1(X)) :=
min{e(7(X)),0”}. o~ is the sum of the values of one
chore-copy of every good. Thus, ¢~ (7(X)) is the max-
imum surplus in X for adding SMALL chores, whose
values are in the set SMALL(V?).

With two constraints using these functions, the IP
ensures that we can allocate all the SMALL items. Us-
ing the notation from the MMS > 0 case, the IP for
Exists-CC-MMS is as follows.

r

ij:n; z; € {0} UN,Vj e [T (6)
j=1

r

Zzgj)xj > (n—1)nt, Vre[3E,9F? (7)
j=1

r

> Fa; >, Vr e 3E,9E%] (8)
j=1

r r

ZC(T(])).T > o; Z(F(T(”)IJ >0 (9)
j=1 j=1

We prove that Existss-CC-MMS solves this IP and re-
turns an allocation which gives every agent a bundle of
value at most 9E? 4 9E, if u > CC-MMS.

The detailed algorithm for CC-MMS and its analysis
are described in the next section.

B.2 Detailed discussion

Since we consider the negated value of chores, i.e., their
cost, all chores have a non-negative cost. All associated
values MMS, CC-MMS are also non-negative. Two small

but key implications of this are (a) because of this nega-
tion, the MMS value is at least the average sum of all
values (b) the sum of values of all items of the B-MMS
instance is v~ — vt.

We now introduce all notation for the CC-MMS prob-
lem and its formal definition.

Definition B.1 (CC-MMS instance). A tuple
(N,C,(Sj)jem+]-u), where N is a set of agents,
M is a set of chores, (Sj)jemm+] are m™ sets of chores,
each containing (n — 1) identical copies of a good,
and u : CU (Sj)jeim+] — Ry is the identical additive
valuation function of the agents in N for all items
CU(S))jem+)-

Definition B.2 (Valid allocation). Given a CC-MMS
instance (N, C, (S;j)je[m+],u), an allocation A is valid
if no agent receives more than 1 item from any set S; €
(Sj)jeim+s t-e., forallie N,j e [m*], |[A;NS;| < 1.
Definition B.3 (CC-MMS value). Given a CC-MMS
instance (N,C,(S;) jeim+],u), let F be the set of all
valid allocations. The CC-MMS walue of the instance,
denoted by CC-MMS, is defined as follows.

CC-MMS = argmin max u(A).
Aer AcA

Finding allocations that give every agent a bundle
worth at most her CC-MMS value is NP-Hard, as the
MMS problem in a chore manna is a special case of
this problem where (S;);cim+] = 0. Hence, we define
approximate CC-MMS allocations as follows.

Definition B.4 ((1 — ¢')CC-MMS allocation). Given a
CC-MMS instance (N,C,(S;)jeim+],u), a valid alloca-
tion A is called a (1 — ¢)CC-MMS allocation if
u(A) < CC-MMS/(1 —¢) VA € A.

Definition B.5 (CC-MMS problem). Given a CC-MMS
instance (N, C, (Sj)jeim+],u) and € >0, return a valid
allocation A such that maxae 4 u(A) < CC-MMS/(1 —
€.

In Section B.3, we show how to reduce the B-MMS

problem to a CC-MMS problem, and why a PTAS for
CC-MMS implies a PTAS for B-MMS.

B.3 Reducing B-MMS to CC-MMS

Given an instance (N, M, v) we define the correspond-
ing CC-MMS instance (N,C, (S;)jem+],u) as follows.
First, C = M ™. Moreover, for all j € M, define S; to
be a set of (n— 1) chores, each represented by tuples as
Sj = {(], k)| ke [TL—].]} Let (Sj)je[mﬂ = Uje[mﬂ Sj
where m* = |[M™|. Finally, define u(j) = |v(j)| for
all j € M~ and u((j, k)) = v(j) for all j € M and
k € [n — 1]. Let the chores in S; be called chore-copies
of good j.

Lemma B.1. Allocations of B-MMS are in one-to-one
correspondence with valid allocations of CC-MMS, such
that if allocation B™ of B-MMS corresponds to alloca-
tion C™ of CC-MMS, then u(C;) = v(B;)+v™*, Vi € N.

Proof. Given a B-MMS allocation B™, add chore-copies
of each good to agents who did not receive the good in
B™, and discard all goods. This gives a valid CC-MMS
allocation. The reverse allocation is obtained by simi-
larly discarding all chore-copies and assigning the cor-
responding good to the agent who did not receive any
chore-copy.

Every agent i € A receives in C™ all the chores
assigned to her in B™. Every good that was assigned
to her in B™ is discarded in C™. Due to this, the
cost of her bundle (negated value) increases by the
value of goods allotted to her in B™. Further, for ev-
ery good not assigned to her, she receives a chore-copy
of it in C™. Each chore-copy increases her cost by the
value of the corresponding good. Hence, her cost in-
creases by the value of all goods not assigned to her as
well. Her bundle’s total negated value in C™ is exactly,
Yjemrnn, V) + 2 jepmr\p, v(J) = vT more than in
BT. O

Corollary B.1. CC-MMS, relates to the MMS wvalue of
the B-MMS problem as,

CC-MMS = MMS + v, (10)

Lemma B.1 implies the following lemma.

Lemma B.2. If MMS > o7 /p, a (1 — ¢)CC-MMS
allocation implies a (1 —¢€)-MMS allocation, for e =
€' (1+p)/ (14 pe'). Thus, an algorithm for the CC-MMS
problem implies one for the B-MMS problem.

Proof. We take the (1 —¢€)CC-MMS allocation, say C7,
and consider the B-MMS allocation B™ correspond-
ing to it, according to the one-to-one correspondence
described in the proof of Lemma B.1. From Equa-
tion (10), the largest bundle in B™ has value at most
CC-MMS/(1 —¢€) —v™.

If MMS > v /p, we have, CC-MMS/(1 — €) — v
(MMS +0v1) /(1 —¢)—vt =MMS/(1 —¢)+vt(e'/
€)) <MMS/(1—€)+(e/(1—€)pMMS = (1+ pe')(1—
€'YMMS. To have this value at most MMS/(1 — €), we
solve (14 pe’)(1 —€) =1/(1 —¢), and get e = €/(1 +
p)/(1+ pe’). As p is a constant in the B-MMS problem,
€ also is.

Given an algorithm for the CC-MMS problem, we find
a (1 — ¢)CC-MMS allocation for ¢ =¢/(1+ (1 —¢€)p),.
From the above relation, this is a (1 — ¢)-MMS alloca-
tion solving B-MMS. O

Lemma B.2 shows that solving CC-MMS is suffi-
cient to solve B-MMS when v~ > v (the other case
is explained in Section 3). Algorithm 3 outlines the
PTAS for CC-MMS. As described in Section B.1, the
algorithm for CC-MMS will perform a search over a
range of possible values of CC-MMS. We now define
this range. First, we know MMS > v™ /p. We also have
the following two trivial lower bounds on MMS. First,
MMS > (v~ —vT)/n. Also, the MMS value is at least the
value of the chore with the largest absolute value. This

is because in any allocation, the largest chore, of value
say v, has to be added to some bundle. This bundle
has value at least v. Hence the value of the highest val-
ued bundle, that is the MMS value, is at least v. Thus,
MMS > max,c p- v(j). Hence, the lower bound on the
MMS value is max{v" /p, (v™ —v™")/n, max;cp- v(j)}.
A trivial upper bound on the MMS value is the

sum of all items, (v- — v'). From Lemma B.1, the
corresponding bounds for CC-MMS are CC-MMS >
vt + max{vt/p, (v= — v")/n,max;c - v(j)}, and

CC-MMS < (v™ —ovH) +oT.
Note that we want an allocation with the smallest

cost of the largest bundle. Hence, the best value for
MMS is the lower bound.

Each iteration of the search in Algorithm 3 takes a
candidate value p in above range, and works as follows.
Note that as we consider values greater than max; v; in
the search, every item has value at most p in every iter-
ation. The algorithm calls a subroutine Exists-GC-MMS,
which checks if there is a valid allocation where all bun-
dles have value at most /(1 —¢€) for € = € /2. If such an
allocation exists the algorithm returns it and if it does
not exist it correctly reports p < CC-MMS. We will dis-
cuss the Existss=CC-MMS algorithm in Section B.4 and
prove the following theorem.

Theorem B.1. Exists-CC-MMS((N,C, (S;) jcm+]»), €, i)

returns a tuple (A, flag), where A is a (1 —€¢)CC-MMS
allocation and flag = true when p > CC-MMS, and
runs in O(mn) time.

Algorithm 3: Algorithm for CC-MMS

Input : (N,C,(S))jemmt],u), € >0
Output: (1 — ¢)CC-MMS allocation if
CC-MMS > (1 + 1/p)vt

=

€+ €/2,
o max{v* /p,mas; o(f), (v — v+)/n)

2 while y < v~ do
3 | (A, flag)
Exists-CC-MMS (N, C, (Sj)je[m+]7 uy, €, 1)
4 if flag then
5 | return A
6 else
r | L aeu/(1-9)
8 A= (Ay,..., A,) where A; = {(j, i) : Vj € [m™]}

forien—1],A,=C // agents 1 to n—1
each get one chore-copy of all goods.
9 return A

Exists-CC-MMS, together with Algorithm 3, is a
PTAS for CC-MMS. We search in the range defined
above and return a trivial allocation if the value is not
found.

Finally, Theorem B.1 and Lemma B.2 are used to
show that Algorithm 3 gives an efficient algorithm for
the B-MMS problem.

Lemma B.3. For any CC-MMS instance, Algorithm 3
returns (1 — €')CC-MMS allocation.

Proof. While running Algorithm 3, let p* be the pu
for which Exists-CC-MMS returns flag = true. From
Theorem B.1, the corresponding allocation A returned
by Existss=CC-MMS has all bundles of value at most
w* /(1 — €). If Exists-CC-MMS returns flag = true for
the first value of p considered, then as the first value is
the lower bound on p, we have CC-MMS > p*, hence
w*/(1—€) < CC-MMS/(1—€) < CC-MMS/(1—¢), where
the last inequality follows as € = €' /2

Otherwise, for the value of p considered in the
previous iteration before p*, that is, for p*(1 —
€), Exists-CC-MMS returned flag = false. Hence
CC-MMS > p*(1 — €). Hence, the largest valued bundle
in A has value at least p*/(1—¢) < CC-MMS/(1—¢)2 <
CC-MMS/(1 —€).

Therefore, in both cases, A is a (1 — ¢')GC-MMS al-
location. O

Lemmas B.2 and B.3, together with Theorem B.1,
prove the second half of Theorem 1.1, specified as fol-
lows.

Theorem B.2. There is an algorithm for the B-MMS
problem for the case MMS < 0 (before negating valua-
tions) that runs in time O(mnlL), where L is the bit-
length of the input.

It now remains to discuss the Algorithm
Exists-CC-MMS and prove Theorem B.1. The next
section discusses this.

B.4 Algorithm for Exists-CC-MMS

In this section, we describe the algorithm
Exists-CC-MMS, which given a CC-MMS instance,
a value p, and a constant € > 0, either outputs a
valid allocation where all bundles have value at least
1/ (1 — €) or correctly reports p < CC-MMS.

The Algorithm has two steps 1) Pre-processing and
2) Main Algorithm.

Pre-processing.(Algorithm 4, line 1) Let E := [1].
Note that E is a constant integer that only depends on
€ and not on parameters in the CC-MMS instance. Scale
the valuations v by 9E2 /.

Let V¢ and V9 be multi-sets of numbers correspond-
ing to scaled valuations, respectively of all the chores in
C, and all the chore-copies in (S;);e[m+]- Formally, we
define V¢, V9 and sets G; for j € [m™] as follows.

¢j = u(j). (952) jec,

& . 9E? .
gj = u(g, k). 7 Vi, k) € 85,985 € (S))jeim+

Gj = {gjl»,..., ;»L_l},j eMT

V9= |J G

JjE[mT]

Vei=A{c1,.. . Cm-}s

Finally, let 7 = V9 U Ve,
This completes the pre-processing step. The following

lemmas characterize partitions of 7 that correspond to
approximately optimal CC-MMS allocations.

Definition B.6 (Valid Partition of 7). We call a par-
tition P = (Py,...,P,) of values in T valid if each
P}, contains at most one element from each Gj, i.e.,
|P. NG| <1forall ken]and je [m"].

It is easy to see that each valid partition of 7 is equiv-
alent to a valid allocation in its corresponding CC-MMS
instance. The next lemma is a direct implication of this
observation.

Lemma B.4. Given a CC-MMS instance
NLC(S)jeim+y,u), if p = CC-MMS then there
s a Ualzd partition of T where the sum of values in
each part is at most 9E?.

Proof. Since u > CC-MMS; there is a valid allocation
for (N, C, (S;)jem+], u) where all bundles have value at
most p. If we scale the value of each item by 9E2/pu,
the value of all bundles will also be scaled by 9E2/pu
because v is additive. Hence we get a valid partition
where all parts have a total sum of at most 9E2. O

Lemma B.5. Finding a valid partition of T where the
sum of values in each part is at most 9(E*+ E) is equiv-
alent to finding a valid allocation for its corresponding
CC-MMS instance where each bundle has value at most

n/(1-4).

Proof. Let P = (P,...,P,) be the valid partition and

let A= (Ay,...,A,) be its corresponding valid alloca-
tion. We have > p p= (9E?/p)u(A;). We have
> p<9(E*+E) Vi € [n]
pEP;
E2
<9M)U(AZ) <9(E?*+E) Vi € [n]

w(A) < (9E2+9E> Vi € [n]

- 92

= u(4;) < p(l+ %) Vi € [n]
= u(A;) < (T+ep Vi € [n].
= u(4;) < p/(1—¢8) Vi € [n].

The second-last inequality holds because E = |1] <
O

A=

Main Algorithm. This step obtains a valid parti-
tion of 7 where the sum of values in each part is at
most 9(E? + E), if u > CC-MMS, else correctly reports
this by returning flag = false. Note that after scaling
by 9E2, we can assume t < 9E2 V¢t € T.

The key of the algorithm is an IP to allocate the BIG
items. We first explain the IP.

Notation. We define SMALL and BIG values in 7.
Call a value ¢ € T SMALL if ¢ < 3F and BIG if
t > 3E. For each T C T let SMALL(T') be the set
of all small values in T and BIG(T) be the set of all
big values in 7. We abuse notation and call a set
G; € V9 small if it contains SMALL values and big oth-
erwise?. Let o be the sum of all values ¢ in SMALL(T),
Le, 0 =) coma(m t- Let 07 = 3 comarLve) t
be the total sum of all values ¢ in SMALL(V®), and
oF == (CiesmaiLveyt)/(n — 1) be 1/(n — 1) of the
sum of SMALL values in V9. Note that o™ is equal to
the sum of values obtained by picking one value from
each small G;, and 0 =0~ + (n — 1)o*.

Next, we know that every BIG value will be in the
range [3E,9E?]. Consider all integers r in [3E, 9E?]. Let
n.. be the number of values in BIG(V®) with [g,;] = r
and let n;' be the number of big G; sets which have
[g)] =r for all k € [n—1]. Thus, there are (n—1)n,5 +
n, items in V9 U V¢ with values whose integral part is
T

We now define the notation to represent a sub-
set of BIG values and their sum. Let X de-
note a part in a partition of T. We define
the type of X by 7(X) = (#(X),7(X)) =
(IBEa13E+17 s 719E27?3E7?3E+17 e)?9E2); here s is
the number of values in BIG(X N V°) with integer part

r and 7, is the number of values in BIG(X N V9) with

integer part r. Let S1zE(7(X)) := ZEEZE r(z, +7,) be

the total sum of these rounded values in BIG(T N X).

Using this notation, we design an IP to find an as-
signment of BIG values in a (1 — €)CC-MMS partition.
That is, a selection of n types that allocate all BIG val-
ues such that, there is a valid way to add SMALL values
and obtain an allocation where each part has value at
most 9(E2+E). Thus, we will only consider types whose
size S1ZE(.) is at most 9E? + 9F.

The variables of the IP correspond to all types that
satisfy (i) Size(r@) < 9E2 4+ 9E, (i) 7¥) < n, (iii)
?&J) < nf. That is, every type represents a subset of
BIG values that have at most n,” values from V9 and n;"
values from V¢ with integral part of value r. Let us call
the items of CC-MMS corresponding to the BIG (resp.
SMALL) values as BIG (resp. SMALL) items. Intuitively,
we allow types that represent valid allocations of BIG
items of the CC-MMS instance. In the solution, every
IP variable takes an integer value equal to the number
of times the corresponding type is selected. This in turn
represents the number of parts in the output allocation
that have a subset of BIG items as represented by this

type.

*Note that each Gj, j € [m'] contains (n — 1)
equal values. i.e, for each Gj, either SMALL(G,) = 0 or
SMALL(G;) = G;.

Lemma B.6. The IP has O(1) number of variables.

Proof. Every type with size at most 9E% +9F can have
at most 3£ + 3 BIG values, as every BIG value is at least
3E. Each value is one of [3E,9E?], a constant sized set.
Hence, the number of types are at most (9E? — 3E +
1)BE+3) which is a constant as F is a constant. The
number of variables of the IP is at most the number of
types with size at most 952 49F, hence is constant. []

Before defining the IP, we define two cost functions
for every type. The intuition for this function is de-
scribed in the technical overview (Section B.1). These
are used to define constraints to allocate SMALL items.

Define ¢(7(X)) := {0,9E? 4+ 6 E — S1zE(7(X))}, and
o~ (7(X)) := min{c(r(X)),c™ }

Using the above notation, the IP is as defined in Sec-
tion B.1.

Algorithm 4: Exists-CC-MMS

Input : (N,C,(S;)jcmm+]u), € p
Output: (A, True) if there exists a
(1 — €)-CC-MMS allocation A and
(0, False) otherwise

1V Ujepn—) Gin Gi =197 ' h
g =, k), V(). k) € S;,¥S; € (S))ieim-1;

Ve {c1,...em+ }, ¢ = u(j). (%) ,J€G;
T+~ Viuye

2P:{P17...’Pn}<_(@,...’@)

3 if IP has a solution X for T then

4 j+1

5 for alli:2z; #0: do

6 Add BIG values to each Py, k € [j,7 + 4]

asper 7 ; j e j4a+1
7 while there is i : 0 (1) > 0 and some
unallocated value from V9 do _

8 while 3j: G;NP; # 0 and o~ (7*) > 0 do
9 assign one value from G; to P;

10 o (1) + o= (1) — u(j)

11 while 35 : G; NP, =0 do

12 assign one value from G to each part

in M\{i}

13 while there is an unallocated j € V° do

14 for any i : ¢(7") > 0: P, < P, U{j}

15 B e(7%) «+ max{c(r?) — u(j),0}
16 A + Allocation of items corresponding to P

return (A, True)

17 return (), False)

The Exists-CC-MMS algorithm is as follows. After ap-
plying the pre-processing step, it defines and solves the
IP from Section B.1. If the IP has a solution, then first
it considers the items from the CC-MMS instance that

correspond to the BIG values in 7. The algorithm par-
titions these items in n bundles by creating x; bundles
corresponding to type 7(*). After this, it considers the
bundles of BIG items that do not have total sum of val-
ues at most 9E2 + 9E. To each of these, it first adds
the SMALL items corresponding to the small G; sub-
sets, by adding at most one item from each subset G,
in any order. After all items from all sets G; are allo-
cated, it considers the parts whose sum is still less than
9E? + 9E. Tt adds items corresponding to SMALL(V)
to any of these, until all items are exhausted. The algo-
rithm returns the tuple A, flag, where A is the alloca-
tion formed by this process, and flag = true.

If the IP does not have a solution, it returns the tuple
(@, flag = false).

Algorithm 4 formally describes Exists-CC-MMS. We
now analyze the correctness of Exists-CC-MMS, and the
run time of Algorithm 3.

Lemma B.7. If p > CC-MMS, then the IP has a so-
lution.

Proof. Lemma B.4 shows that there is a partition of
T where all bundles have value at most 9E2, as pu >
CC-MMS. Let T* = (Ty,--- ,T)¥) be this partition. Let
™ = [, 7% 7" = [7(T})](ie[n)) be the multi-set of
types of each part in T*.

For 7*, constraints (6), (7), and (8) hold by definition
of a valid partition. For any 7% € 7* we have,

SRRETI T S
tESMALL(T) tEBIG(T)
9E? + 3E — Size(1")

<
< ().

The second inequality holds because the SizZE function
rounds up all values, and there are at most 3F BIG
values in each T;. By adding the above inequality for
all 7" € 7*, we obtain (9) of the IP.

Since each T} is a subset of a valid part, its corre-
sponding type 7° has at most one value from each Cj.
Therefore, for any 7/ € 7* we have,

> t<e(rh) — > t

teSMALL(7T:NV9) teSMALL(7iNV*)
< C(Ti) -0 < 0+(7'i).

By adding the above inequality for all 7;* € T™ we ob-
tain the constraint (9) for IP. Thus, T* is a solution of
the IP. O

Lemma B.8. If the IP has a solution, then the alloca-
tion returned by Exists-CC-MMS after finding this solu-
tion is a valid allocation of CC-MMS where all bundles
have value at most 9E? + 9E.

Proof. Let 7%° be the solution of the IP, P*°! be
the partition of the BIG values corresponding to these

types, and A be the allocation returned by Algorithm
Exists-GC-MMS after finding 75°.

The algorithm adds SMALL items by first adding
chore-copies. Initially, when all chore-copies are unal-
located, as 7° satisfies constraint (b) of (9) of the
IP, the total cost o~ (7(.)) for SMALL(V9) for all bun-
dles is at least o~. Hence, there is at least one agent
with cost 0~ more than 0. The algorithm assigns as
items from different sets G; to this agent, until her
cost 0~ (7%) becomes zero. At this point, either i has
exhausted one chore-copy of every good, or her cost
c(t%) = 0. If the former is true, we have a smaller prob-
lem with (n — 2) copies of every good remaining, and
n agents, hence by inductive reasoning, the algorithm
assigns all chore-copies. If ¢(7%) = 0, then first we as-
sign one chore-copy of each good j that ¢ did not get,
to every remaining agent, to obtain a valid partition.
Note that the sum of costs o~ (%) for the remain-
ing agents A\{i}, is equal to the space in each bun-
dle for adding at most one copy of every chore, hence
at least j, is more than the total cost of the unallo-
cated items, including j, in V9, hence we can do this.
The cost o~ 7 for all bundles now is » 5, v 42 o~k =
Shen 0T =0T = (0= 1) g ul) 2 0
o ri—(n—1) Zj:cjnAi:@ u(j), which is exactly the cost
of unallocated chore-copies. Hence, again by induction,
we can repeat the process.

Finally, as constraint (9) is satisfied, until there is
some unallocated chore, there will be some bundle A;
with ¢(7(4;)) > 0. Line 8 and 14 can add one SMALL

chore to A;. Hence, all SMALL chores can be allocated.
O

Lemma B.9. Exists-CC-MMS runs in time O(mn).

Proof. The time to run Exists-CC-MMS is asymptot-
ically equal to the time for constructing and solving
the IP. Lenstra’s algorithm (Lenstra Jr 1983) takes
time exponential in the number of variables, O(2!/ Ez) =
O(2"/¢) here, and polynomial in the largest coefficient
of any variable in all inequalities, m™ + (n — 1)m™ =
O(mn) here. Hence, it requires O(2"/¢mn) = O(mn)
time to solve the IP. O

